
MQTT Essentials
The Ultimate Guide to the MQTT
Protocol for IoT Messaging

VERSION 2.0

TABLE OF CONTENTS

Abstract

In the rapidly evolving landscape of IoT, MQTT has emerged

as the de facto standard protocol for data exchange. MQTT

Essentials is designed to equip decision-makers, solution

architects, and IoT professionals with a strategic and practical

understanding of MQTT and how to execute it for scalable,

reliable, and seamless data movement. Delve into how MQTT

can help your organization overcome the challenges other IoT

protocols cannot address with features such as persistent

sessions, retained messages, Last Will and Testament (LWT),

Quality of Service (QoS) levels, and more. After reading this

guide, you’ll be ready to use MQTT to optimize connectivity

and lay the proper data foundation to enable any IoT or IIoT use

case.

MQTT Essentials Ebook

2

Abstract... 2

Chapter 1: Introduction to MQTT.. 3

Chapter 2: Mastering the Basics of MQTT............................... 7

Chapter 3: MQTT Topics, Subscriptions,

QoS, and Persistent Messaging.. 14

Chapter 4: MQTT Publish/Subscribe Architecture

(Pub/Sub) ... 16

Chapter 5: MQTT Client and MQTT Broker Connection

Establishment ... 21

Chapter 6: MQTT Publish, MQTT

Subscribe & Unsubscribe ... 24

Chapter 7: MQTT Topics and Wildcards 30

Chapter 8: MQTT Quality of Service (QoS) 0,1, & 2.................. 34

Chapter 9: MQTT Persistent Sessions and Clean Sessions 37

Chapter 10: MQTT Retained Messages 39

Chapter 11. MQTT Last Will and Testament (LWT).................. 41

Chapter 12: MQTT Keep Alive and Client Take-Over................ 43

Chapter 13: Introduction to MQTT 5 Protocol 46

Chapter 14: Key Reasons to Upgrade to MQTT 5 from

MQTT 3.1.1 ... 51

Chapter 15: MQTT Session Expiry and Message

Expiry Intervals ... 53

Chapter 16: MQTT 5’s Improved Client

Feedback & Negative ACKs ... 57

Chapter 17: MQTT User Properties... 59

Chapter 18: MQTT Shared Subscriptions 62

Chapter 19: MQTT Payload Format Description and

Content Type .. 65

Chapter 20: MQTT Request-Response Pattern 66

Chapter 21: MQTT Topic Alias ... 69

Chapter 22: Enhanced Authentication in MQTT 70

Chapter 23: MQTT Flow Control .. 73

Chapter 24: MQTT Topic Tree & Topic Matching: Challenges and

Best Practices Explained.. 74

Chapter 25: Additional Reading for Mastering MQTT.............. 76

Chapter 26: Next Steps – Choosing the Right MQTT Broker..... 87

Chapter 1: Introduction to MQTT

MQTT is a lightweight messaging protocol originally designed for communication in constrained networks with limited bandwidth

and compute resources. Developed with simplicity and scalability in mind, MQTT is particularly well-suited for Internet of Things

(IoT) applications where the variety and quantity of devices are growing exponentially.

Below is the official description of the specification:

“MQTT is a Client Server publish/subscribe messaging transport protocol. It is lightweight,

open, simple, and designed so as to be easy to implement. These characteristics make

it ideal for use in many situations, including constrained environments such as for

communication in Machine to Machine (M2M) and Internet of Things (IoT) contexts where a

small code footprint is required and/or network bandwidth is at a premium."

Citation from the official MQTT 3.1.1 specification

 www.hivemq.com

3



https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

MQTT uses a binary message format for communication between clients and servers (brokers). This is in contrast to other

protocols that use text-based formats, such as HTTP or SMTP.

MQTT Publish/Subscribe Architecture

MQTT Fixed Header format example.

Image Source: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

The binary format used by MQTT is designed to reduce

the size of messages and increase the efficiency of

communication. By using a binary format, the protocol can

minimize the amount of data that needs to be transmitted and

reduce the processing power required to interpret messages.

This makes MQTT well-suited for use in low-bandwidth or

low-power environments, such as IoT devices with limited

resources. It’s also used in enterprise systems, where real-

time data communication is necessary.

Another important aspect of the protocol is that MQTT is

extremely easy to implement on the client side. Ease of use

was a key concern in the development of MQTT, and this

makes it a perfect fit for constrained devices with limited

resources.

Benefits of MQTT

MQTT offers several key benefits:

1.	 Lightweight and efficient: MQTT minimizes the network

bandwidth and compute resources required by clients to

exchange data.

2.	 Bidirectional communication: MQTT allows devices

to send and receive data from the server, allowing for

bidirectional data exchange with other components in

the network.

3.	 Scalable: MQTT can scale to support millions of devices

or “things” in an IoT or IIoT ecosystem.

4.	 Reliable message delivery: MQTT specifies different

Quality of Service (QoS) levels to ensure reliable

message delivery.

5.	 Message Buffering and Session Resumption: MQTT

supports persistent sessions between devices and

servers, enhancing message reliability by ensuring

that messages are delivered to clients even after

disconnections.

6.	 Security features: MQTT supports TLS encryption for

message confidentiality and authentication protocols for

client verification.

MQTT Essentials Ebook

4

https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

Real-World Applications and Use Cases of
MQTT: An Overview

MQTT is used extensively in IoT, Industrial IoT (IIoT), and

M2M applications. It has been adopted by companies

such as BMW, Air France-KLM, Liberty Global, Mercedes

Benz, Hytera, Awair, and Matternet, as showcased in

HiveMQ’s customer success stories. These companies

have successfully leveraged MQTT in automotive,

telecommunications, energy, public safety, and connected

product domains.

Here are a few examples:

1.	 Smart homes: MQTT is used to connect various devices

in a smart home, including smart thermostats, light

bulbs, security cameras, and other appliances. This

allows users to control their home devices remotely

using a mobile app.

2.	 Industrial automation: MQTT is used to connect

machines and sensors in factories and other industrial

settings. This allows for real-time monitoring and control

of processes, which can improve efficiency and reduce

downtime.

3.	 Agriculture: MQTT is used in precision agriculture to

monitor soil moisture levels, weather conditions, and

crop growth. This helps farmers optimize irrigation and

other crop management practices.

4.	 Healthcare: MQTT is used to connect medical devices

and sensors, such as glucose meters and heart rate

monitors, to healthcare providers. This allows for remote

monitoring of patients, which can improve patient

outcomes and reduce healthcare costs.

5.	 Transportation: MQTT is used in connected cars and

other transportation systems to enable real-time

tracking and monitoring of vehicles. This can improve

safety and help optimize traffic flow.

Now that we have a general understanding of what MQTT is

and its characteristics, let’s dive into its history and how it

came to be a popular messaging protocol. We will explore

some of the elements and characteristics of MQTT after

learning about its origins.

The Origin and History of MQTT

In 1999, Andy Stanford-Clark of IBM and Arlen Nipper of

Arcom (now Cirrus Link) developed the MQTT protocol to

enable minimal battery loss and bandwidth usage when

connecting with oil pipelines via satellite. The inventors

specified several requirements for the protocol, including:

•	 Simple implementation

•	 Quality of Service data delivery

•	 Lightweight and bandwidth-efficient

•	 Data agnostic

•	 Continuous session awareness

These goals are still at the core of MQTT. However, the

primary focus of the protocol has changed from proprietary

embedded systems to open Internet of Things (IoT) use

cases.

Over the next ten years, IBM used the protocol internally until

they released MQTT 3.1 as a royalty-free version in 2010. This

shift in focus from proprietary embedded systems to open IoT

use cases created confusion about the acronym MQTT.

When Andy and Arlen created this protocol in 1999, they

named it after the IBM product. Although many sources

label MQTT as a message queue protocol, this is not entirely

accurate. While it is possible to queue messages in certain

cases, MQTT is not a traditional message queuing solution.

In 2011, IBM contributed MQTT client implementations to

the newly founded Paho project of the Eclipse Foundation,

an independent, non-profit corporation that provides a

community for open-source software projects. This was a

While it formerly stood for MQ Telemetry

Transport, where MQ referred to the MQ

Series, a product IBM developed to support

MQ telemetry transport, MQTT is no longer

an acronym. It is now simply the name of the

protocol.

 www.hivemq.com

5



https://www.hivemq.com/case-studies/bmw-mobility-services/
https://www.hivemq.com/case-studies/air-france-klm/
https://www.hivemq.com/case-studies/liberty-global/
https://www.hivemq.com/case-studies/daimler/
https://www.hivemq.com/case-studies/daimler/
https://www.hivemq.com/case-studies/hytera/
https://www.hivemq.com/case-studies/awair/
https://www.hivemq.com/case-studies/matternet/
https://www.hivemq.com/case-studies/
https://www.eclipse.org/org/foundation/

significant development for the protocol because it created a

more supportive ecosystem for MQTT. By contributing MQTT

client implementations to an open-source project like Paho,

IBM allowed developers to access the protocol and build

their applications on top of it. This move helped to increase

the visibility and adoption of MQTT among the developer

community.

In 2012, HiveMQ became acquainted with MQTT and built the

first version of their software that same year. In 2013, HiveMQ

released their software to the public.

The Role of OASIS in Standardizing MQTT

In 2014, OASIS announced that it would take over the

standardization of MQTT, with the goal of making it an open

and vendor-neutral protocol. Founded in 1993 as a non-pro

fit, OASIS (Organization for the Advancement of Structured

Information Standards) is an international consortium

that develops open standards for the Internet and related

technologies.

It has developed numerous important standards for industries

such as cloud computing, security, and IoT, including AMQP,

SAML, and DocBook. The standardization process took

around one year, and on October 29, 2014, MQTT became an

officially approved OASIS standard.

OASIS’ involvement in MQTT has been critical to its success

as a widely adopted IoT protocol. As a neutral, third-party

organization, OASIS ensures that the protocol is maintained

as an open standard that can be implemented by anyone

without licensing fees or proprietary restrictions.

Additionally, OASIS provides a forum for the community

to come together and collaborate on improvements to the

protocol, which has resulted in the development of MQTT

5, the latest version of the protocol with new features for

improved reliability and scalability.

In March 2019, OASIS ratified the new MQTT 5 specification.

This version introduced new features to MQTT that are

required for IoT applications deployed on cloud platforms,

and cases that require more reliability and error handling to

implement mission-critical messaging.

Different Versions of MQTT: MQTT 5 vs.
MQTT 3

The earlier version of MQTT was 3.1.1 The latest version is

MQTT 5. MQTT 5 has enhancements to improve performance,

increase reliability, and provide greater control over

communication between clients and servers. Some of the

key enhancements include better error reporting, enhanced

scalability, and improved support for offline message

queueing. These improvements ensure that MQTT can handle

Timeline of how MQTT evolved and when HiveMQ released

an earlier version of its MQTT Broker

MQTT Essentials Ebook

6

the ever-increasing demands of modern IoT environments,

where the number of connected devices and the amount of

data they generate are growing exponentially.

The reassuring news for those acquainted with MQTT 3.1.1

is that the fundamental principles and features remain

unchanged in MQTT 5. Despite certain modifications and

expansions, the heart of the MQTT you are familiar with

persists in version 5. Noteworthy adjustments include slight

changes to pre-existing features such as Last Will and

Testament and the inclusion of popular HiveMQ features like

TTL and Shared Subscriptions, which you will learn in detail

in the chapters ahead.

The underlying protocol has experienced minor

transformations, and an additional control packet — AUTH

— has been incorporated. However, these changes do

not obscure MQTT’s core identity. In essence, MQTT v5

is still unambiguously MQTT, retaining its recognizable

characteristics while enhancing its capabilities.

Chapter 2: Mastering the Basics of
MQTT

At the core of MQTT are MQTT brokers and MQTT clients.

The MQTT broker is an intermediary between senders

and receivers, dispatching messages to the appropriate

recipients. MQTT clients publish messages to the broker,

and other clients subscribe to specific topics to receive

messages. Each MQTT message includes a topic, and

clients subscribe to topics of their interest. The MQTT broker

maintains a subscriber list and uses it to deliver messages to

the relevant clients.

An MQTT broker can also buffer messages for disconnected

clients, ensuring reliable message delivery even in unreliable

network conditions. To achieve this, MQTT supports three

different Quality of Service (QoS) levels for message delivery:

0 (at most once), 1 (at least once), and 2 (exactly once).

MQTT Clients

Many open source MQTT Client Libraries are available

in a variety of programming languages. HiveMQ provides

MQTT Client Libraries, which are designed to simplify the

deployment and implementation of MQTT clients and offer

users top-notch functionality, performance, security, and

reliability. Some of the programming languages supported

While MQTT 5 presents a substantial update to MQTT

3.1.1, it remains more of an evolution than a revolution,

faithfully retaining all the features that have contributed

to its success. Its lightweightness, push communication,

unique attributes, ease of use, exceptional scalability,

suitability for mobile networks, and decoupling of

communication participants all endure in this latest

version. However, several foundational mechanics have

been added or slightly adjusted, ensuring that while the

new version still has the feel of MQTT, it incorporates

improvements that reinforce its standing as the most

popular Internet of Things protocol to date.

There are two versions of the MQTT

specification: MQTT 3.1.1 and MQTT 5.

While most commercial MQTT brokers now

support MQTT 5, some IoT-managed cloud

services still primarily support MQTT 3.1.1.

We highly recommend using MQTT 5 for new

IoT deployments due to its enhanced features

that focus on robustness and cloud-native

scalability.

 www.hivemq.com

7



https://www.hivemq.com/blog/mqtt-essentials-part-9-last-will-and-testament/
https://www.hivemq.com/blog/mqtt-essentials-part-9-last-will-and-testament/
https://www.hivemq.com/blog/mqtt-client-load-balancing-with-shared-subscriptions/
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://www.hivemq.com/mqtt/mqtt-client-library-encyclopedia/
https://www.hivemq.com/blog/mqtt5-essentials-part3-upgrade-to-mqtt5-now/

include C#, C++, Java, WebSockets, Python, and more.

Eclipse Paho also offers MQTT client libraries for languages

like C/C++ and Python. You can find a comprehensive list of

MQTT clients at mqtt.org.

MQTT Brokers

MQTT Brokers come in various implementations, catering

to different needs, such as open-source, commercial, and

managed cloud services. HiveMQ offers two commercial

editions: HiveMQ Professional and HiveMQ Enterprise.

HiveMQ also offers HiveMQ Cloud, a managed cloud

MQTT service, and HiveMQ Community Edition, an open-

source version. In addition, HiveMQ offers an MQTT broker

embedded in HiveMQ Edge, an open-source industrial device

connectivity software for IIoT use cases. For an extensive list

of MQTT brokers, please visit mqtt.org.

If you are looking to find the ideal MQTT broker for your

IoT or industry 4.0 use case, read our blog MQTT Broker

Comparison – Which is the Best for Your IoT Application?

How to Make an MQTT Broker Communicate
with an MQTT Client?

Here’s an overview of how to make an MQTT broker

communicate with an MQTT client, such as a sensor, an edge

device, a PLC, etc.:

Step 1: Install an MQTT Broker of Your Choice

MQTT brokers are available in commercial, open-source,

cloud-managed and general-purpose editions. To get an

MQTT broker to communicate with an MQTT client, first you

need to find an edition of the broker that is right for your use

case.

Here are a few examples of how you can install an MQTT

broker in different environments:

•	 Use a fully-managed MQTT Broker, like HiveMQ Cloud.

Here’s how to get started with HiveMQ Cloud.

•	 Download and install an MQTT broker on a server or

computer of your choice. Here’s how to get started with

the HiveMQ platform.

•	 Run an MQTT broker on Docker. Here’s how to get

started with HiveMQ on-premises MQTT Broker.

•	 Deploy an MQTT broker on Amazon Web Services (AWS).

Here’s how to get started with HiveMQ on AWS.

•	 Deploy an MQTT Broker on Microsoft Azure. Here’s how

to get started with HiveMQ on Azure.

Step 2: Connect MQTT Clients to Your MQTT Broker

The method an MQTT Client uses to connect to an MQTT

broker varies based on the broker's setup. Below are a few

methods for establishing a connection:

Example 1: Using MQTT CLI for On-Premises MQTT Brokers

If you are unaware, the MQTT CLI is an open-source, Java-

based MQTT client tool that enables you to interact quickly

and easily with any MQTT broker in various ways. The

MQTT CLI comes in various binary packages that can be

downloaded from the documentation homepage on GitHub.

Here are the steps:

1.	 Open a terminal window and go to the tools directory

of your HiveMQ MQTT Broker. In the tools directory, go

to the mqtt-cli/bin folder and enter mqtt sh to start the

MQTT CLI in shell mode. The MQTT CLI starts and lists

useful options and commands.

2.	 To connect your first MQTT client to your HiveMQ Broker

on localhost and give it a custom identifier, enter con -h

localhost -i testClient1. This command creates the first

MQTT client with the custom identifier testClient1 and

connects the client to your MQTT broker on localhost.

3.	 To connect another MQTT client that you can use to test

your installation, open a second terminal window and

enter mqtt sh (keep your original terminal window open).

4.	 In the second terminal window, enter con -h localhost

-i testClient2. This command creates a second MQTT

client with the customer identifier testClient2 and

connects the client to your MQTT broker on localhost.

Example 2: Using Cloud-Managed MQTT Broker

Using a cloud-managed MQTT broker such as HiveMQ Cloud,

you can set up your broker and obtain connection details

through the console. These details enable MQTT Clients to

MQTT Essentials Ebook

8

https://eclipse.dev/paho/
https://mqtt.org/software/
https://www.hivemq.com/pricing/#compare-features
https://www.hivemq.com/pricing/#compare-features
https://www.hivemq.com/products/mqtt-cloud-broker/
https://www.hivemq.com/community/open-source/
https://mqtt.org/software/
https://www.hivemq.com/blog/mqtt-broker-comparison-iot-application/
https://www.hivemq.com/blog/mqtt-broker-comparison-iot-application/
https://docs.hivemq.com/hivemq/latest/user-guide/getting-started.html#hivemq-cloud
https://docs.hivemq.com/hivemq/latest/user-guide/getting-started.html#download
https://docs.hivemq.com/hivemq/latest/user-guide/getting-started.html#download
https://docs.hivemq.com/hivemq/latest/user-guide/getting-started.html#docker
https://docs.hivemq.com/hivemq/latest/user-guide/getting-started.html#docker
https://docs.hivemq.com/hivemq/latest/user-guide/getting-started.html#aws
https://docs.hivemq.com/hivemq/latest/user-guide/getting-started.html#azure
https://docs.hivemq.com/hivemq/latest/user-guide/getting-started.html#azure
https://hivemq.github.io/mqtt-cli/docs/installation/

connect to the broker. Here’s an overview of how to connect

MQTT Client to HiveMQ Cloud.

1.	 Sign up for Serverless FREE HiveMQ Cloud plan.

2.	 Create a free HiveMQ Cloud cluster.

3.	 Create access credentials that your MQTT clients use to

connect to the cluster.

4.	 Copy the Cluster url, port number, and access

credentials.

5.	 Use the details in your MQTT client to connect to

HiveMQ Cloud. For detailed steps, check out our

documentation.

Step 3: Start Publishing MQTT Messages/
Subscribing to an MQTT Topic

Using MQTT CLI or via the console, you can start publishing

MQTT messages and subscribing to MQTT topics. Here’s an

example using MQTT CLI:

1.	 In the terminal window of the MQTT client (testClient2),

enter sub -t testTopic -s.This command subscribes

testClient2 to all messages that are published with the

topic testTopic.

2.	 In the terminal window of another MQTT client

(testClient1), enter pub -t testTopic -m Hello. This

command publishes the message Hello from testClient1

with the topic testTopic.The message Hello appears

immediately in the terminal window of testClient2.

For detailed steps, check out our documentation.

To learn more about how an MQTT Client communicates with

an MQTT Broker, read our blog MQTT Client, MQTT Broker,

and MQTT Server Connection Establishment Explained.

If you are new to MQTT, read our blog post MQTT Tutorial: An

Easy Guide to Getting Started with MQTT.

Mechanism of How an MQTT Client
Establishes a Connection with an MQTT
Broker

Here's a basic overview of the mechanism of how an MQTT

client establishes a connection with an MQTT broker:

•	 Client Initialization: The MQTT client initializes its MQTT

library and sets up the required parameters, such as the

broker's address and port.

•	 Connection to the broker: The client establishes a TCP/

IP connection with the MQTT broker. The default port for

MQTT is 1883 (or 8883 for encrypted connections using

TLS/SSL).

•	 Handshake: Once the TCP/IP connection is established,

an MQTT handshake occurs. This involves exchanging

control packets to establish the connection and deal

with parameters.

•	 Connect packet: The client sends a "CONNECT" packet

to the broker, indicating its intention to establish a

connection. This packet includes information such as

client ID, connection flags, and other settings.

•	 Acknowledgment (CONNACK): The broker responds with

a "Connack" packet, indicating whether the connection

request is accepted or rejected.

•	 Subscriptions (optional): If the client is a subscriber,

it can then send "Subscribe" packets to the broker,

indicating the topics it wants to subscribe to.

•	 Publishing messages: Once the connection is

established, clients can publish messages to topics

or subscribe to topics to receive messages from other

clients.

•	 Keep-Alive: To maintain the connection, clients

periodically exchange "Ping" packets to confirm that the

connection is still active.

Example Implementation of MQTT

To illustrate how MQTT works, below is a simple example

that utilizes HiveMQ Cloud. To test this implementation on

a live cluster, sign up for HiveMQ Cloud, which allows you

to connect up to 100 IoT devices at no cost. Sign-up without

credit card information.

MQTT Brokers, like HiveMQ, offer advanced

features for reliable, flexible, scalable and secure

MQTT client connection.

 www.hivemq.com

9



https://console.hivemq.cloud/?utm_source=HiveMQ+Pricing+Page&utm_medium=serverless+signup+CTA+Button&utm_campaign=HiveMQ+Cloud+PaaS&utm_content=serverless&_gl=1*ysey8i*_ga*NTc1ODU5MDkuMTY5NDc3MjU4MA..*_ga_P96XGQCLE4*MTcwMTExMDQ2Ny42MS4xLjE3MDExMTA5NTcuNDkuMC4w
https://docs.hivemq.com/hivemq-cloud/quick-start-guide.html
https://docs.hivemq.com/hivemq-cloud/quick-start-guide.html
https://docs.hivemq.com/hivemq/latest/user-guide/getting-started.html#download
https://www.hivemq.com/blog/mqtt-essentials-part-3-client-broker-connection-establishment/
https://www.hivemq.com/blog/mqtt-essentials-part-3-client-broker-connection-establishment/
https://www.hivemq.com/blog/how-to-get-started-with-mqtt/
https://www.hivemq.com/blog/how-to-get-started-with-mqtt/
https://www.hivemq.com/products/mqtt-cloud-broker/
https://console.hivemq.cloud/?utm_source=hivemq-com&utm_medium=getting-started-post&utm_campaign=cloud&__hstc=184124345.9ec222da250c0a2391a8f1d5693d4452.1616495678251.1681720101806.1681725440885.2625&__hssc=184124345.8.1681725440885&__hsfp=1483712317

As a first-time user of HiveMQ Cloud, you will be automatically directed to the "Getting Started" section within the management

view of your cluster. Here, you can create access credentials and obtain connection details, as you will see later in this example.

Use Case Example: An IoT Application Built Using Raspberry Pi, MQTT, and Temperature Sensor

In this example, we explore the connection of a temperature and brightness sensor to a Raspberry Pi, and then leveraging the

power of MQTT to transmit the sensor data to a designated MQTT broker effortlessly. You will discover how another device, acting

as a control center, can effortlessly receive and process the MQTT data, enabling efficient monitoring and control of your IoT

ecosystem.

Step 1 - Use the Raspberry Pi as an MQTT Client Connected to Sensors

Once you’ve successfully signed up for HiveMQ Cloud, click on Manage Cluster and head to the Connection Settings section on

the Overview tab of your cluster. There, you’ll discover your unique hostname/Cluster URL. Copy this hostname and replace it in

the code snippet provided below.

To establish a secure connection between your MQTT client and the cluster, creating MQTT client access credentials is essential.

Navigate to the Access Management tab of your HiveMQ Cloud cluster, and enter the username, password and set Permission to

Publish and Subscribe. These credentials will also replace "<your_username>" and "<your_password>" within the code snippet.

Communication between the sensor client and the control center over MQTT

MQTT Essentials Ebook

10

https://console.hivemq.cloud/?utm_source=hivemq-com&utm_medium=getting-started-post&utm_campaign=cloud

public class Sensor {

 public static void main(String[] args) throws InterruptedException {

 final String host = "<your_host>"; // use your host-name, it should look like 	

'<alphanumeric>.s2.eu.hivemq.cloud'

 final String username = "<your_username>"; // your credentials

 final String password = "<your_password>";

 // 1. create the client

 final Mqtt5Client client = Mqtt5Client.builder()

 .identifier("sensor-" + getMacAddress()) // use a unique identifier

 .serverHost(host)

 .automaticReconnectWithDefaultConfig() // the client automatically 		

reconnects

 .serverPort(8883) // this is the port of your cluster, for mqtt it is the

default port 8883

 .sslWithDefaultConfig() // establish a secured connection to HiveMQ Cloud

using TLS

 .build();

 // 2. connect the client

 client.toBlocking().connectWith()

 .simpleAuth() // using authentication, which is required for a secure

connection

 .username(username) // use the username and password you just created

 .password(password.getBytes(StandardCharsets.UTF_8))

 .applySimpleAuth()

 .willPublish() // the last message, before the client disconnects

 .topic("home/will")

 .payload("sensor gone".getBytes())

 .applyWillPublish()

 .send();

 // 3. simulate periodic publishing of sensor data

 while (true) {

 client.toBlocking().publishWith()

 .topic("home/brightness")

 .payload(getBrightness())

 .send();

 www.hivemq.com

11



Let’s dissect the code snippet provided above to understand its functionality:

1.	 Creating the MQTT Client: The code initializes the MQTT client, ensuring a unique identifier is used. An automatic reconnect

feature is also enabled to handle potential instability in the sensor’s internet connection.

2.	 Establishing Connection to "<your_host>": The client connects to the specified host. Notably, a “will” message is set, allowing

the broker to automatically publish a “sensor gone” notification if the sensor loses its connection.

3.	 Periodic Publication of Simulated Sensor Data: The code periodically publishes simulated brightness and temperature data

using the methods getBrightness() and getTemperature() methods, ensuring a steady stream of information for further

processing.

With this code snippet, you will have created an MQTT client, established a connection to the broker, and started regularly

transmitting the Brightness and Temperature sensor data.

Now, let’s move on to the next step in our implementation process:

 TimeUnit.MILLISECONDS.sleep(500);

 client.toBlocking().publishWith()

 .topic("home/temperature")

 .payload(getTemperature())

 .send();

 TimeUnit.MILLISECONDS.sleep(500);

 }

 }

 //4. Simulate Temperature and Brightness sensor data

 private static byte[] getBrightness() {

 // simulate a brightness sensor with values between 1000lux and 10000lux

 final int brightness =

ThreadLocalRandom.current().nextInt(1_000, 10_000);

 return (brightness + "lux").getBytes(StandardCharsets.UTF_8);

 }

 private static byte[] getTemperature() {

 // simulate a temperature sensor with values between 20°C and 30°C

 final int temperature = ThreadLocalRandom.current().nextInt(20, 30);

 return (temperature + "°C").getBytes(StandardCharsets.UTF_8);

 }

}

MQTT Essentials Ebook

12

Step 2 - Implementing the Subscribing Client

In this next step, we focus on creating the subscribing client responsible for consuming the values published on the topics home/

temperature and home/brightness.

Implementing the subscribing client enables the reception of sensor data transmitted via MQTT. This functionality allows you to

process and utilize the received information for various applications efficiently.

public class ControlCenter {

 public static void main(String[] args) {

 final String host = "<your_host>"; // use your host-name, it should look like

'<alphanumeric>.s2.eu.hivemq.cloud'

 final String username = "<your_username>"; // your credentials

 final String password = "<your_password>";

 // 1. create the client

 final Mqtt5Client client = Mqtt5Client.builder()

 .identifier("controlcenter-" + getMacAddress()) // use a unique identifier

 .serverHost(host)

 .automaticReconnectWithDefaultConfig() // the client automatically

reconnects

 .serverPort(8883) // this is the port of your cluster, for mqtt it is the

default port 8883

 .sslWithDefaultConfig() // establish a secured connection to HiveMQ Cloud

using TLS

 .build();

 // 2. connect the client

 client.toBlocking().connectWith()

 .simpleAuth() // using authentication, which is required for a secure

connection

 .username(username) // use the username and password you just created

 .password(password.getBytes(StandardCharsets.UTF_8))

 .applySimpleAuth()

 .cleanStart(false)

 .sessionExpiryInterval(TimeUnit.HOURS.toSeconds(1)) // buffer messages

 .send();

 // 3. subscribe and consume messages

 client.toAsync().subscribeWith()

 .topicFilter("home/#")

 www.hivemq.com

13



The code snippet above performs the following actions:

1.	 Creates an MQTT client instance, similar to the sensor

client, with the client ID prefixed as controlcenter-.

2.	 Establishes a connection between the client and the

specified host in <your_host>. To ensure message

buffering when the control center is offline, a session

expiry interval of 1 hour is set.

3.	 The client Subscribes to all topics starting with home

using the multi-level wildcard # in the topic filter.

4.	 Any incoming messages with their corresponding topic

and payload are printed. If the sensor loses connection,

the topic home/will and the payload “sensor gone” are

printed.

The code in this example was tested on Java 11. You can also

find a publicly hosted example in our GitHub repository, along

with an example tailored for our public broker.

By implementing both the sensor data publishing client and

the subscribing client, you can establish a seamless MQTT

communication system where sensor data is published and

consumed by the control center, enabling efficient monitoring

and control of devices.

Chapter 3: MQTT Topics,
Subscriptions, QoS, and Persistent
Messaging

MQTT's Messaging Model: Topics and Subscriptions

MQTT’s messaging model is based on topics and

subscriptions. Topics are strings that messages are published

to and subscribed to. Topics are hierarchical and can contain

multiple levels separated by slashes, like a file path as shown

below.

myhome/kitchen/smartdishwasher

Subscriptions are used to specify which topics a client is

interested in receiving messages from.

When a client subscribes to a topic, it is essentially telling the

broker that it is interested in receiving messages published

to that topic. The broker then keeps track of the subscription

and forwards any messages published to that topic to the

subscribed client.

 .callback(publish -> {

 System.out.println("Received message on topic " + publish.getTopic()

+ ": " +

 new String(publish.getPayloadAsBytes(), StandardCharsets.

UTF_8));

 })

 .send();

 }

}

Example: Smart door opening with a mobile device using MQTT

MQTT Essentials Ebook

14

https://github.com/hivemq/hivemq-examples/tree/master/hivemq-getting-started-hivemq-cloud

It’s important to note that a client can subscribe to multiple

topics at once, and a topic can have multiple subscribers. This

allows for a flexible and scalable messaging system.

In addition to topics and subscriptions, MQTT also supports

wildcards, which can be used to subscribe to multiple topics

that match a certain pattern. The two types of wildcards are

the single-level wildcard (+), which matches a single level in a

topic, and the multi-level wildcard (#), which matches all levels

after the specified level in a topic.

Overall, MQTT’s messaging model provides a flexible and

scalable way to publish and subscribe to messages using

topics and subscriptions. The use of wildcards adds an

additional layer of flexibility, allowing for subscriptions

to multiple related topics using a single subscription.

Understanding MQTT’s messaging model is crucial, but equally

important is the quality of service (QoS) level that you choose

to ensure reliable message delivery.

Understanding MQTT Quality of Service (QoS) Levels
for IoT Applications

MQTT supports three levels of Quality of Service (QoS): QoS 0,

QoS 1, and QoS 2. Here is the breakdown of each level:

•	 QoS 0: This level provides “at most once” delivery, where

messages are sent without confirmation and may be lost.

This is the lowest level of QoS and is typically used in

situations where message loss is acceptable or where

the message is not critical. For example, QoS 0 might be

appropriate for sending sensor data where occasional

data loss would not significantly impact the overall

results.

•	 QoS 1: This level provides “at least once” delivery, where

messages are confirmed and re-sent if necessary. With

QoS 1, the publisher sends the message to the broker

and waits for confirmation before proceeding. If the

broker does not respond within a set time, the publisher

re-sends the message. This level of QoS is typically used

in situations where message loss is unacceptable, but

message duplication is tolerable. For example, QoS 1

might be appropriate for sending command messages to

devices, where a missed command could have serious

consequences, but duplicated commands would not.

•	 QoS 2: This level provides “exactly once” delivery, where

messages are confirmed and re-sent until they are

received exactly once by the subscriber. QoS 2 is the

highest level of QoS and is typically used in situations

where message loss or duplication is completely

unacceptable. With QoS 2, the publisher and broker

engage in a two-step confirmation process, where the

broker stores the message until it has been received

and acknowledged by the subscriber. This level of QoS

is typically used for critical messages such as financial

transactions or emergency alerts.

It’s important to note that higher QoS levels typically require

more resources and can result in increased latency and

network traffic. As a result, it’s important to choose the

appropriate QoS level based on the specific needs of your

application.

In addition to the three levels of Quality of Service, MQTT also

supports message persistence, which ensures that messages

are not lost in the event of a network or server failure.

Understanding MQTT Message Persistence for
Reliable IoT Communication

MQTT provides three types of message persistence options:

•	 Non-persistent: This is the default option in MQTT. In this

mode, messages are not stored on the server and are lost

if the server or network fails. This mode is suitable for

situations where messages are not critical and can be

easily regenerated.

•	 Queued persistent: In this mode, messages are stored

on the server until they are delivered to the subscriber.

If the subscriber is not available, messages are queued

Message persistence is an important feature in

MQTT. It ensures messages are not lost in the event

of a network or server failure. In MQTT, message

persistence is achieved by storing messages on the

server until they are delivered to the subscriber.

 www.hivemq.com

15



until the subscriber reconnects. Queued persistence

is useful when the subscriber is not always connected

to the network, or if the subscriber needs to receive all

messages, even if they are sent when the subscriber is

offline.

•	 Persistent with acknowledgment: This mode provides

the highest level of message persistence. In this mode,

messages are stored on the server until they are delivered

to the subscriber, and the subscriber must acknowledge

receipt of the message. If the subscriber does not

acknowledge receipt, the message is re-sent until the

subscriber acknowledges receipt. This mode is useful

when it is critical to ensure that messages are received

and processed by the subscriber.

To configure message persistence in MQTT, the broker

software used for handling MQTT connections must support

the chosen persistence option. The configuration can be done

through the broker’s configuration files or through its web

interface.

It is important to note that message persistence comes with

a trade-off in terms of performance and storage. The more

persistent the messages, the more storage and processing

resources are required by the broker. Therefore, it is important

to choose the appropriate persistence level based on the

specific requirements of the application.

Chapter 4: MQTT Publish/Subscribe
Architecture (Pub/Sub)

MQTT Pub/Sub architecture, also known as pub/sub, is

a messaging pattern in software architecture. It enables

communication between different components or systems

in a decoupled manner. In the Pub/Sub architecture, there

are publishers that generate messages and subscribers

that receive those messages. However, publish-subscribe is

a broader concept that can be implemented using various

protocols or technologies.

Decoupling Features of MQTT Pub/Sub

The Pub/Sub architecture offers a unique alternative to

traditional client-server (request-response) models. In the

request-response approach, the client directly communicates

with the server endpoint, creating a bottleneck that slows down

performance. On the other hand, the pub/sub model decouples

the publisher of the message from the subscribers. The

publisher and subscriber are unaware that the other exists. As

a third component, a broker handles the connection between

them. This decoupling produces a faster and more efficient

communication process.

MQTT is one such specific messaging protocol

that follows the publish-subscribe architecture.

MQTT uses a broker-based model where clients

connect to a broker, and messages are published

to topics. Subscribers can then subscribe

to specific topics and receive the published

messages.

 Example of MQTT Publish / Subscribe Architecture

By eliminating the need for direct communication

between publishers and subscribers, pub/

sub architecture removes the exchange of IP

addresses and ports. It also provides decoupling,

allowing operations on both components to

continue communication uninterrupted during

publishing or receiving.

MQTT Essentials Ebook

16

The pub/sub features three dimensions of decoupling for

optimal efficiency:

•	 Space decoupling: Publisher and subscriber do not need

to know each other (for example, no exchange of IP

address and port).

•	 Time decoupling: Publisher and subscriber do not need to

run at the same time.

•	 Synchronization decoupling: Operations on both

components do not need to be interrupted during

publishing or receiving.

Pub/Sub Decoupling in MQTT Protocol

MQTT decouples the publisher and subscriber

spatially, meaning they only need to know the

broker’s hostname/IP and port to publish or receive

messages. Additionally, MQTT decouples by time,

allowing the broker to store messages for clients

that are not online. Two conditions must be met to

store messages: the client must have connected

with a persistent session and subscribed to a topic

with a Quality of Service greater than 0.

One of the most significant advantages of Pub/Sub software

architecture is its ability to filter all incoming messages and

distribute them to subscribers correctly, eliminating the

need for the publisher and subscriber to know one another’s

existence.

MQTT Pub/Sub Message Filtering Feature

Message filtering is a crucial aspect of the pub/sub

architecture as it ensures subscribers only receive messages

they are interested in. The pub/sub broker offers several

filtering options, including subject-based filtering, content-

based filtering, and type-based filtering.

Option 1: Subject-based Filtering of Pub/Sub
Architecture

This is the most common filtering option, where the broker

filters the messages based on the topic or subject. The

subscribing clients indicate their interest by subscribing to

specific topics, and the broker routes the messages to the

appropriate subscribers based on the topic hierarchy. The topic

structure is hierarchical, with levels separated by a forward

slash (/), allowing subscribers to receive messages that match

a specific topic level or a topic hierarchy. Here’s an example of

topic hierarchy.

Benefits of Subject-based Filtering in Pub/Sub:

•	 Simple and easy to use

•	 Flexible, allowing for a hierarchical topic structure

•	 Efficient, as it only forwards messages to subscribers

interested in a particular topic

Drawbacks of Subject-based filtering in Pub/Sub:

•	 Publishers and subscribers need to agree on the topic

hierarchy beforehand

•	 Limited to filtering messages based on topic hierarchy

only

Use Case of Subject-based filtering in Pub/Sub:

Subject-based filtering is best suited for use cases where

messages are organized into topics and subscribers are

interested in a particular subset of those topics.

For example, in a smart home system, a subscriber may be

interested in receiving updates about the temperature of a

specific room. The subscriber would subscribe to a topic like

"smart-home/living-room/temperature," and the

broker would only send messages that match this topic to the

subscriber.

Example of Topic Hierarchy

 www.hivemq.com

17



Message Filtering in MQTT

MQTT uses subject-based filtering of messages. Every

message contains a topic (subject) that the broker

can use to determine whether a subscribing client

gets the message or not. To handle the challenges

of a pub/sub system, MQTT has three Quality of

Service (QoS) levels. You can easily specify that a

message gets successfully delivered from the client

to the broker or from the broker to a client. However,

there is the chance that nobody subscribes to the

particular topic. If this is a problem, the broker must

know how to handle the situation. For example, the

HiveMQ MQTT Broker has an extension system that

can resolve such cases. You can have the broker take

action or simply log every message into a database

for historical analyses. To keep the hierarchical topic

tree flexible, it is important to design the topic tree

very carefully and leave room for future use cases.

If you follow these strategies, MQTT is perfect for

production setups.

Option 2: Content-based Filtering of Pub/Sub
Architecture

In this type of filtering, the broker filters messages based

on their content, which is specified using a filter expression.

Subscribers indicate their interest by subscribing to a specific

filter expression, and the broker routes the messages to

the appropriate subscribers based on the content of the

messages.

How to bring Content-based Filtering in MQTT?

Even though MQTT uses subject-based filtering of

messages, you can also set up content-based filtering

by using the HiveMQ MQTT Broker and our custom

extension system.

Benefits of Content-based Filtering in Pub/Sub:

•	 Provides more granular control over which messages are

received

•	 Allows for filtering based on message content rather than

just topic hierarchy

•	 Flexible, allowing for complex filter expressions

Drawbacks of Content-based Filtering in Pub/Sub:

•	 Can be more complex to use and set up than subject-

based filtering

•	 Requires publishers to include additional metadata in the

message to enable filtering

•	 Performance may suffer when processing large numbers

of filter expressions

Use Case of Content-based Filtering in Pub/Sub:

Content-based filtering is best suited for use cases where

messages are not organized into topics, and subscribers are

interested in a specific subset of messages based on their

content.

For example, in a logistics application, a subscriber may be

interested in receiving messages only about packages with a

specific tracking number. The subscriber would subscribe to

a filter expression like "tracking-number = '123456'," and the

broker would only send messages that match this expression

to the subscriber.

Option 3: Type-based Filtering of Pub/Sub
Architecture

In type-based filtering, the broker filters messages based

on their type or class. This type of filtering is useful when

working with object-oriented languages where messages are

represented as objects. Subscribers indicate their interest by

subscribing to a specific message type or class, and the broker

routes messages to the appropriate subscribers based on the

message type.

Benefits of Type-based Filtering in Pub/Sub:

•	 Allows for filtering based on message type, regardless of

the topic or content

•	 Simple to use, especially when working with object-

oriented languages

•	 Offers a high degree of flexibility and extensibility

MQTT Essentials Ebook

18

https://docs.hivemq.com/plugins/latest/
https://www.hivemq.com/products/mqtt-broker/
https://docs.hivemq.com/hivemq/latest/extensions/

Drawbacks of Type-based Filtering in Pub/Sub:

•	 Limited to filtering based on message type only

•	 Publishers and subscribers need to agree on the message

type hierarchy beforehand

Use Case of Type-based Filtering in Pub/Sub:

Type-based filtering is best suited for use cases where

messages are organized into a class hierarchy, and subscribers

are interested in a specific type or subset of messages based

on their class.

For example, in a financial application, a subscriber may be

interested in receiving messages only about stock prices. The

subscriber would subscribe to a message type like “stock-

price,” and the broker would only send messages of this type to

the subscriber.

These filtering options provide flexibility and granularity in

deciding which messages are sent to which subscribers.

Depending on the use case, you can use one or more of these

filtering options to ensure that subscribers receive only the

messages they are interested in.

However, it’s important to note that the pub/sub model may

not be suitable for all use cases, and there are challenges

to consider, such as ensuring that both the publisher and

subscriber know which topics to use for subject-based

filtering and dealing with instances where no subscriber

reads a particular message. You need to be aware of how the

published data is structured beforehand.

For subject-based filtering, both publisher and

subscriber need to know which topics to use. Also,

with message delivery, the publisher can’t assume

somebody is listening to the messages that are sent.

This is an issue because, in publish-subscribe model,

the publisher sends messages to the broker without

knowing who the subscribers are or whether they

are currently connected to the broker. The broker is

responsible for delivering messages to all connected

subscribers who subscribe to the appropriate topic.

However, if there are no subscribers currently

connected to the broker who have subscribed to

the topic of a particular message, that message will

not be delivered to anyone. Therefore, it is vital for

publishers to keep in mind that message delivery

is not guaranteed and to design their systems

accordingly.

MQTT Pub/Sub’s Scalability Feature

Scalability is one of the significant benefits of using the Pub/

Sub architecture. The traditional client-server model can limit

scalability, particularly when dealing with large numbers of

clients. However, with the pub/sub model, the broker can

process messages in an event-driven way, enabling highly

parallelized operations. This means that the system can handle

a greater number of concurrent connections without sacrificing

performance.

In addition to event-driven processing, message caching

and intelligent message routing also contribute to improved

scalability in Pub/Sub. By caching messages, the broker

can quickly retrieve and deliver them to subscribers without

additional processing. Intelligent routing, on the other hand,

ensures that messages are delivered only to the subscribers

that need them, reducing unnecessary network traffic and

further improving scalability.

As MQTT follows the pub/sub architecture,

scalability comes naturally to this protocol, making

it ideal for several IoT use cases. Despite its

advantages, scaling up to millions of connections

can still pose a challenge for Pub/Sub. In such

cases, clustered broker nodes can be used to

distribute the load across multiple servers, while

load balancers can ensure that the traffic is evenly

distributed. Check out how HiveMQ Broker can

scale to 200 million concurrent connections using

this method.

Now that we have covered the basic concepts of Publish/

Subscribe architecture, let’s look at the benefits of using it for

IoT communication.

 www.hivemq.com

19



https://www.hivemq.com/resources/achieving-200-mil-concurrent-connections-with-hivemq/
https://www.hivemq.com/resources/achieving-200-mil-concurrent-connections-with-hivemq/

What Are the Key Benefits of MQTT Pub/Sub
Architecture in IoT and IIoT?

The pub/sub model offers several benefits, making it a popular

choice for various applications. Here are some of the key

advantages of using pub/sub architecture:

Improved scalability: The pub/sub architecture is highly

scalable, making it suitable for applications that handle many

clients and messages. The broker acts as a central hub for

all messages, allowing it to handle many clients without

compromising performance.

Increased fault tolerance: The decoupled nature of pub/

sub architecture also provides improved fault tolerance. In a

traditional client-server model, all connected clients lose their

connection if the server goes down. In contrast, in pub/sub,

the broker can store messages until the client reconnects,

ensuring no messages are lost.

Flexibility: The pub/sub architecture is flexible and can be

used in a variety of applications, ranging from low-bandwidth,

high-latency networks to high-speed, low-latency networks.

The MQTT protocol, which is based on pub/sub architecture,

supports various quality-of-service levels, providing the

flexibility to choose the appropriate level for your application.

Common Challenges in Pub/Sub Architecture
and How to Overcome Them

While pub/sub architecture offers several benefits, such

as scalability, flexibility, and decoupling of components, it

also presents some challenges that must be addressed to

ensure a successful implementation. Below are some of the

most common challenges of using pub/sub and solutions to

overcome them:

1.	 Message Delivery: One challenge of using pub/sub is

ensuring that messages are delivered to subscribers.

In some instances, no subscribers may be available to

receive a particular topic, resulting in the message being

lost. To overcome this, MQTT provides quality of service

(QoS) levels.

2.	 Message Filtering: Another challenge of pub/sub is

filtering messages effectively so that each subscriber

receives only the messages of interest. As discussed

earlier, pub/sub provides three filtering options: subject-

based, content-based, and type-based filtering. Each

option has its benefits and drawbacks, and the choice of

filtering method will depend on the use case. MQTT uses

subject-based filtering of messages and every message

contains a topic that the broker uses to determine

whether a subscribing client receives the message or not.

3.	 Security: Security is a crucial aspect of any messaging

system, and pub/sub is no exception. MQTT allows for

several security options, such as user authentication,

access control, and message encryption, to protect the

system from unauthorized access and data breaches.

4.	 Scalability: Pub/Sub architecture must be designed with

scalability in mind, as the number of subscribers can grow

exponentially in a large-scale system. MQTT provides

features such as multiple brokers, clustering, and load

balancing to ensure that the system can handle a large

number of subscribers and messages.

5.	 Message Ordering: In a pub/sub system, message

ordering can be challenging to maintain. As messages

are sent asynchronously, it’s difficult to ensure that

subscribers receive messages in the correct order.

However, MQTT provides QoS levels that ensures

messages are successfully delivered from the client to

the broker or from the broker to a client.

Because MQTT works asynchronously, tasks are not

blocked while waiting for or publishing a message. Most

client libraries are based on callbacks or a similar model,

making the flow of messages usually asynchronous.

In certain use cases, synchronization is desirable and

possible, and some libraries have synchronous APIs to

wait for a specific message.

6.	 Real-time Constraints: In some use cases, real-time

constraints are critical, and pub/sub architecture may

not be the best choice. For example, a request/response

architecture may be a better option if low latency is

essential.

You can address the challenges of using pub/sub through

careful design and implementation. Developers can build

scalable, secure, and efficient messaging systems by

MQTT Essentials Ebook

20

understanding these challenges and utilizing MQTT’s features

effectively.

MQTT vs. Message Queues

There is a lot of confusion about the name MQTT and whether

the protocol is implemented as a message queue or not.

We will try to shed some light on the topic and explain the

differences. We mentioned earlier that MQTT refers to the

MQSeries product from IBM and has nothing to do with

“message queue“. Regardless of where the name comes from,

it’s useful to understand the differences between MQTT and a

traditional message queue:

A message queue stores messages until they are consumed.

When you use a message queue, each incoming message is

stored in the queue until it is picked up by a client (often called

a consumer). If no client picks up the message, the message

remains stuck in the queue and waits to be consumed. In a

message queue, it is not possible for a message not to be

processed by any client, as it is in MQTT if nobody subscribes

to a topic.

A message is only consumed by one client. Another big

difference is that in a traditional message queue a message

can be processed by one consumer only. The load is

distributed between all consumers for a queue. In MQTT the

behavior is quite the opposite: every subscriber that subscribes

to the topic gets the message.

Queues are named and must be created explicitly. A queue is

far more rigid than a topic. Before a queue can be used, the

queue must be created explicitly with a separate command.

Only after the queue is named and created is it possible to

publish or consume messages. In contrast, MQTT topics are

extremely flexible and can be created on the fly. If you can

think of any other differences that we overlooked, we would

love to hear from you in the comments.

To summarize, the publish/subscribe (pub/sub) architecture

provides a flexible and scalable way of building distributed

systems that can handle many connected clients. MQTT’s

lightweight and efficient pub/sub messaging characteristics

have helped it gain widespread adoption in IoT, mobile, and

other distributed applications.

Using MQTT, architecture engineers, and companies can build

systems reliably and efficiently communicate data in various

real-world scenarios. With its decoupling by space and time,

asynchronous messaging, subject-based filtering, and Quality

of Service (QoS) levels, MQTT provides a robust set of features

to help developers overcome the challenges of building

distributed systems. Overall, the pub/sub architecture and

MQTT protocol are valuable tools for developers who want to

build efficient and scalable distributed systems.

Chapter 5: MQTT Client and MQTT
Broker Connection Establishment

The two main components of the MQTT protocol are the

client and the broker. An MQTT client can be any device that

runs an MQTT library and connects to an MQTT broker over a

network. The publisher and subscriber labels refer to whether

the client is publishing or subscribed to receive messages. The

MQTT broker, on the other hand, is responsible for receiving

all messages, filtering them, and sending them to subscribed

clients. The broker also handles client authentication

and authorization and holds all clients’ session data with

persistent sessions. Let’s dive deeper into foundational MQTT

components.

One of the key features of the MQTT protocol is its efficient

and lightweight approach to exchanging messages between

IoT devices. The foundation of this communication is

the MQTT connection, which enables devices to securely

and reliably exchange data with the MQTT broker. In this

section, we will explore the process of establishing an

MQTT connection and the different parameters involved. By

understanding how MQTT connections work, you can optimize

your IoT deployment for better performance, security, and

scalability.

The MQTT protocol is based on TCP/IP, meaning the client and

the broker must have a TCP/IP stack.

 www.hivemq.com

21



MQTT connections are always between one client and one

broker, and clients never connect directly to other clients. To

initiate a connection, the client sends a CONNECT message

to the broker, which responds with a CONNACK message and

a status code. Once the connection is established, the broker

keeps it open until the client sends a disconnect command or

the connection breaks.

This section will explore the MQTT connection through a NAT

and how the MQTT client initiates a connection by sending

a CONNECT message to the broker. We will delve into the

details of the MQTT CONNECT command message and focus

on some essential options, including ClientId, Clean Session,

Username/Password, Will Message, and Keep Alive. Moreover,

we will discuss the broker’s response to a CONNECT message,

which is a CONNACK message containing two data entries: the

session present flag and a connect return code.

MQTT Connection Through a NAT

In many cases, MQTT clients live behind routers that use

network address translation (NAT) to convert private network

addresses (such as 192.168.x.x or 10.0.x.x) to public-

facing addresses. As mentioned, the MQTT client starts the

connection by sending a CONNECT message to the broker.

Since the broker has a public address and maintains the

connection open to enable bidirectional sending and receiving

of messages (after the initial CONNECT), MQTT clients located

behind NAT routers will have no difficulties.

For those unaware, NAT is a common networking technology

that routers use to allow devices on a private network to

access the internet through a single public IP address. NAT

works by translating the IP addresses of devices on the private

network to the public IP address of the router and vice versa.

In the case of MQTT, clients behind a NAT router

can still communicate with the MQTT broker

because the broker has a public IP address and

can connect with the client through the NAT.

However, some potential issues can arise with

NAT, such as configuring port forwarding or

opening firewall ports to allow incoming traffic to

reach the MQTT broker. Additionally, some NAT

implementations may have limitations on the

number of concurrent connections that can be

established, which could affect the scalability of

the MQTT system.

Now that we understand how MQTT clients behind a NAT

establish a connection with the broker, let’s take a closer look

at the MQTT CONNECT command message and its contents.

How Does MQTT Client Initiate a Connection with the
CONNECT Message?

Now let’s examine the MQTT CONNECT command message,

which the client sends to the broker to initiate a connection. If

this message is malformed or too much time elapses between

opening a network socket and sending the CONNECT message,

the broker terminates the connection to deter malicious clients

that can slow the broker down. In addition to other details

specified in the MQTT 3.1.1 specification, a good-natured

MQTT 3 client sends the following content.

Let’s focus on some of the essential options:

MQTT Essentials Ebook

22

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718028

While users of an MQTT library may find some of the

information in a CONNECT message useful, certain details may

be more relevant to implementers of the library. For a complete

understanding of all the information contained in the message,

refer to the MQTT 3.1.1 specification.

Let’s look at some of the elements the MQTT CONNECT

packet contains, such as ClientId, Clean Session, Username/

Password, Will Message, Keep Alive, etc.

What is ClientId in CONNECT MQTT Packet?

The ClientId is a unique identifier that distinguishes each MQTT

client connecting to a broker and enables the broker to keep

track of the client’s current state. To ensure uniqueness, the

ClientId should be specific to each client and broker. MQTT

3.1.1 allows for an empty ClientId if no state needs to be

maintained by the broker. However, this connection must have

the clean session flag set to true, or the broker will reject the

connection.

What is CleanSession in CONNECT MQTT Packet?

The CleanSession flag indicates whether the client wants

to establish a persistent session with the broker. When

CleanSession is set to false (CleanSession = false), considered

a persistent session, the broker stores all subscriptions for the

client and all missed messages for the client that subscribed

with a Quality of Service (QoS) level 1 or 2. In contrast, when

CleanSession is set to true (CleanSession = true), the broker

doesn’t retain any information for the client and discards any

previous state from any persistent session.

What is Username/Password in CONNECT MQTT Packet?

MQTT provides the option to include a username and password

for client authentication and authorization. However, it’s

important to note that sending this information in plain

text poses a security risk. To mitigate this risk, we highly

recommend using encryption or hashing (such as through TLS)

to protect the credentials. We also recommend using a secure

transport layer when transmitting sensitive data.

Alternatively, some brokers like HiveMQ offer SSL certificate

authentication, eliminating the need for username and

password credentials altogether. Taking these precautions

ensures that your MQTT communication remains secure and

protected from potential security threats.

What is Will Message in CONNECT MQTT Packet?

The MQTT Last Will and Testament (LWT) feature includes

a last will message that notifies other clients when a client

disconnects unexpectedly. This message can be specified by

the client within the CONNECT message as an MQTT message

and topic. When the client disconnects abruptly, the broker

sends the LWT message on the client’s behalf. Learn more

about MQTT Last Will and Testament in Part 9 of this series.

What is Keep Alive in CONNECT MQTT Packet?

The MQTT Keep Alive feature allows the client to specify a time

interval in seconds and communicate it to the broker when

establishing a connection. This interval determines the longest

period the broker and client can communicate without sending

a message. To ensure the connection remains active, the

client sends regular PING Request messages, and the broker

responds with a PING response. This method allows both sides

to determine if the other is still available. Learn more about

MQTT Keep Alive functionality in Part 10 of this series.

When connecting to an MQTT broker from an MQTT 3.1.1

client, the Keep Alive interval is essential. However, some

MQTT libraries have additional configuration options,

such as the way queued messages are stored in a specific

implementation.

MQTT Broker Response With a CONNACK Message

When a broker receives a CONNECT message, it is obligated to

respond with a CONNACK message.

 www.hivemq.com

23



https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://www.hivemq.com/blog/mqtt-essentials-part-9-last-will-and-testament/
https://www.hivemq.com/blog/mqtt-essentials-part-10-alive-client-take-over/

The CONNACK message contains two data entries:

•	 The session present flag

•	 A connect return code

What is sessionPresent Flag in a CONNACK Message?

The sessionPresent flag informs the client whether a

previous session is still available on the broker. If the client

has requested a clean session, the flag will always be false,

indicating there is no previous session.

However, if the client requests to resume a previous session,

the flag will be true if the broker still has stored session

information. This flag helps clients determine whether they

need to re-subscribe to topics or if the broker still has the

subscriptions from the previous session.

What is returnCode Flag in a CONNACK Message?

The returnCode is a status code that informs the client about

the success or failure of the connection attempt. This code can

indicate various types of errors, such as invalid credentials or

unsupported protocol versions.

Here are the returnCodes at a glance:

It’s essential to pay attention to the connect returnCode,

as it can help diagnose connection issues. For example,

if the returnCode indicates an authentication failure, the

client can attempt to reconnect with the correct credentials.

Understanding the sessionPresent flag and connect returnCode

is crucial for successful MQTT connections.

To summarize, understanding the roles of MQTT clients

and the broker and the connection establishment process

is essential for anyone interested in working with the MQTT

protocol. MQTT client libraries make adding MQTT support

to applications and devices easy without implementing the

protocol from scratch. MQTT brokers are responsible for

receiving, filtering, and sending messages to subscribed clients

and handling client authentication and authorization. With this

knowledge, you can build scalable and efficient IoT systems

using MQTT.

Chapter 6: MQTT Publish, MQTT
Subscribe & Unsubscribe

MQTT PUBLISH Message

In MQTT, a client can publish messages immediately when

it connects to a broker. The messages are filtered based on

topics, and each message must contain a topic that the broker

can use to forward the message to interested clients. The

payload of each message includes the data to transmit in byte

format, and the sending client can choose to send any type of

data, including text, numbers, images, binary data, and even

full-fledged XML or JSON.

Return Code Return Code Response

0 Connection accepted

1
Connection refused, unacceptable

protocol version

2 Connection refused, identifier rejected

3 Connection refused, server unavailable

4
Connection refused, bad user name or

password

5 Connection refused, not authorized

Example of MQTT Payload Format

MQTT Essentials Ebook

24

MQTT is data-agnostic, which means the

payload can be structured according to the

specific use case of the client. The payload is

the message’s main content and is what the

clients subscribe to, receive, and process.

A PUBLISH message in MQTT has several attributes that

determine its behavior including the packet identifier, topic

name, quality of service, retain flag, payload, and DUP flag.

Let’s take a look at each.

What is MQTT PacketId or Packet Identifier?

The Packet Identifier (PacketId) is an essential attribute

in MQTT. It is used to identify the specific message and to

ensure that messages are delivered in the order they were

sent, particularly when QoS levels greater than zero are used.

The Packet ID is assigned by the client and is included in the

PUBLISH, PUBREL, PUBREC, and PUBCOMP messages. When

the broker receives a PUBLISH message, it assigns a Packet

ID to the message and sends a PUBACK message to the client

containing the Packet ID of the PUBLISH message. The client

uses the PUBACK message to confirm that the broker has

received the message.

These four messages are part of the MQTT protocol’s Quality

of Service (QoS) mechanisms, which ensure reliable message

delivery. The QoS level determines the number of messages

exchanged between the client and the broker.

It’s worth noting that the packet identifier uniquely identifies

a message as it flows between the client and broker. The

packet identifier is only relevant for QoS levels greater than

zero. This holds true not only for PUBLISH, but for SUBSCRIBE,

UNSUBSCRIBE and CONNECT messages.

The client library and/or the broker is responsible for setting

this internal MQTT identifier. When a QoS level greater than

zero is used, the client must wait for a PUBACK or PUBREC

message from the broker before it can send the next message.

The client should also keep track of the Packet IDs it has

sent and received to ensure that messages are not lost or

duplicated. Overall, the Packet ID is essential to MQTT’s

reliability mechanism and helps ensure that messages are

delivered correctly and efficiently.

What is MQTT Topic Name?

MQTT uses the topic name as a fundamental concept. It

structures this name hierarchically using forward slashes as

delimiters and creates a simple string. It’s similar to a URL

path but without the protocol and domain components. MQTT

topics are used to label messages and provide a way for

clients to subscribe to specific messages.

For example, a device that measures temperature might

publish its readings to the topic "sensors/temperature/

livingroom". A client interested in these readings can subscribe

to this topic and receive updates as they’re published.

In the MQTT protocol, messages related to publishing

and acknowledgment of messages are divided into

several stages:

1.	 Publish (PUBLISH): This is the first stage of the

process and involves an MQTT client publishing a

message to the broker. The message contains a

topic and a payload.

2.	 Publish Received (PUBREC): After receiving the

PUBLISH message, the broker sends a PUBREC

message to acknowledge that it has received the

message. This is the second stage of the process.

3.	 Publish Release (PUBREL): Once the client receives

the PUBREC message, it sends a PUBREL message

to release the broker from the responsibility of

keeping the message in memory. This is the third

stage.

4.	 Publish Complete (PUBCOMP): The broker

finally sends a PUBCOMP message to

confirm that it has successfully received and

processed the message. This is the fourth and

final stage of the process.

 www.hivemq.com

25



MQTT provides two types of wildcards to use with topic

subscriptions:

•	 "+" (plus sign) is used to match a single level in the

hierarchy. For example, a subscription to "sensors/+/

livingroom" would match “sensors/temperature/

livingroom” and “sensors/humidity/livingroom”, but not

“sensors/temperature/kitchen”.

•	 "#" (hash sign) is used to match multiple levels in the

hierarchy. For example, a subscription to “sensors/#”

would match “sensors/temperature/livingroom”,

“sensors/humidity/kitchen”, and “sensors/power/meter1”.

Subscribing to a large number of topics can have a significant

impact on broker performance. This is because every message

that is published to a topic subscribed by a client must be

delivered to that client. If many clients subscribe to many

topics, this can quickly become a heavy burden on the broker.

Using wildcards to subscribe to multiple topics with a single

subscription can also impact performance. When a client

subscribes to a topic with a wildcard, the broker must evaluate

every message published to a matching topic and determine

whether to forward it to the client. If the number of matching

topics is large, this can strain the broker’s resources.

To avoid performance issues, it’s important to use topic

subscriptions efficiently. One approach is to use more

specific topic filters whenever possible, rather than relying on

wildcards. Another approach is to use shared subscriptions,

which allow multiple clients to share a single subscription to

a topic. This can help reduce the number of subscriptions and

messages that the broker must handle. Finally, monitoring

the broker’s performance and adjusting its configuration as

necessary is important to ensure optimal performance.

What is Quality of Service (QoS) in MQTT?

We touched upon Quality of Service Level (QoS) of an MQTT

message earlier. To refresh, QoS is indicated by a number that

ranges from 0 to 2. Each level provides a different level of

reliability and assurance for message delivery.

•	 QoS 0 (at most once): This level provides no guarantee

that a message will be delivered. The message is sent

once, and if it is lost or not received by the recipient, it will

not be resent.

•	 QoS 1 (at least once): This level ensures that a message

is delivered at least once, but it may be delivered multiple

times in the case of network issues or failures.

•	 QoS 2 (exactly once): This level provides the highest

level of assurance for message delivery. The message

is guaranteed to be delivered exactly once, but this level

requires more communication between the sender and

receiver, which can increase latency and network traffic.

Choosing the appropriate QoS level depends on the specific

use case. For example, QoS 0 might be suitable for non-critical

data, while QoS 2 might be necessary for critical data requiring

high-reliability levels.

It’s important to note that the QoS level can impact the

performance of the broker and network, so it’s recommended

to use the appropriate level for the specific use case.

What is MQTT Retain Flag?

The Retained Flag is an important feature that determines

whether the broker saves a message as the last known good

value for a specified topic. When the retained flag is set to true,

the broker will save the most recent message that matches the

specified topic, regardless of whether there are any subscribed

clients.

When a new client subscribes to a topic with a retained

message, the broker sends the last retained message (on

that topic) to the client. This allows clients to receive the

most recent and relevant information even if they have not

subscribed to that topic before.

It’s important to note that, like many of the other elements,

the use of retained messages can also impact the broker’s

performance, especially if there are many retained messages.

Additionally, if a retained message is updated frequently, it can

result in increased network traffic and potentially affect the

network’s performance.

MQTT Essentials Ebook

26

What is MQTT Payload?

The payload is the actual content of the message and can

contain any kind of data. MQTT is data-agnostic, meaning

it can handle different data types, including images, text in

any encoding, encrypted data, and binary data. However,

it’s important to note that the payload size can impact

network performance and memory usage on the client and

broker. Therefore, keeping payloads as small as possible is

recommended, especially when publishing messages with a

high frequency.

What is MQTT DUP Flag?

The MQTT DUP Flag indicates that a message is a duplicate

and has been resent because the intended recipient (client or

broker) did not acknowledge the original message. It is only

relevant for messages with QoS greater than 0. When a client

or broker receives a message with the DUP flag set, it should

ignore the message if it has already received a message with

the same message ID. The client or broker should process the

message normally if they have not previously received it.

The MQTT protocol (MQTT client library or broker) handles

resend and duplicate mechanism automatically, but it’s

important to note that this can impact network performance

and increase network traffic.

How do MQTT brokers handle messages from clients?

When a client publishes a message to an MQTT broker, the

broker performs several tasks to ensure the message is

delivered according to the QoS level specified by the client.

Here’s what happens:

1.	 Message reception: The broker reads the message sent by

the client and verifies its syntax and format.

2.	 Acknowledgement: The broker sends an acknowledgment

message to the client to confirm receipt of the message.

The level of acknowledgment depends on the QoS level

requested by the client.

3.	 Processing: The broker determines which clients have

subscribed to the topic of the message and sends a copy

of the message to each of them. The broker may also

retain the message as the last known good value for that

topic, depending on the value of the Retained flag.

4.	 Feedback: The publishing client receives a confirmation

message from the broker indicating that the message

was published successfully. However, the client does not

receive feedback on how many subscribers received the

message or whether anyone is interested in it.

The client that initially publishes the message is only

concerned about delivering the PUBLISH message to the

broker. Once the broker receives the PUBLISH message, it is

the responsibility of the broker to deliver the message to all

subscribers. The publishing client does not get any feedback

about whether anyone is interested in the published message

or how many clients received the message from the broker.

How to Subscribe to MQTT Topics?

Publishing a message doesn’t make sense if no one ever

receives it. This is where subscribing comes into play. Once a

client publishes a message to an MQTT broker, the message

must be delivered to interested clients. Clients that want to

receive messages on topics of interest send a SUBSCRIBE

message to the broker. The SUBSCRIBE message is simple and

contains a unique packet identifier and a list of subscriptions.

How MQTT PUBLISH works

Example of MQTT SUBSCRIBE Packet

 www.hivemq.com

27



https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718063

Packet Identifier: The packet identifier is unique and identifies

a message as it flows between the client and broker. The client

library or the broker is responsible for setting this internal

MQTT identifier.

List of Subscriptions: A SUBSCRIBE message can contain

multiple subscriptions for a client. Each subscription includes

a topic and a QoS level. The topic in the SUBSCRIBE message

can contain wildcards that make it possible to subscribe

to a topic pattern instead of a specific topic. If there are

overlapping subscriptions for one client, the broker delivers the

message with the highest QoS level for that topic.

Overall, MQTT allows clients to subscribe to specific topics,

receive messages published to those topics, and process the

payloads according to their specific use case. The packet

identifier and QoS level in the SUBSCRIBE message ensure that

messages are delivered reliably and with the appropriate level

of quality.

Once a client sends a SUBSCRIBE message with the list

of desired topics and QoS levels to an MQTT broker, the

broker responds with a SUBACK message that confirms the

subscription and indicates the maximum QoS level that the

broker will deliver. Let’s look deeper into SUBACK.

What is MQTT Suback?

Once the client sends a SUBSCRIBE message to the broker

with the topics and corresponding QoS levels, the broker

acknowledges the subscription request by sending a SUBACK

message to the client. The SUBACK message confirms the

receipt of the SUBSCRIBE message and indicates whether the

broker has accepted or rejected each subscription.

Packet Identifier: The SUBACK message includes the

same packet identifier that the client included in the

SUBSCRIBE message, which enables the client to match the

acknowledgment to the original request.

Return Code: The SUBACK message also includes one return

code for each topic/QoS-pair specified in the SUBSCRIBE

message. The return codes are binary values that indicate

whether the broker has granted or rejected the subscription

request for each topic.

The return codes for QoS levels are as follows:

•	 QoS 0: This means the subscription request has been

granted at QoS 0. The broker delivers the messages to the

client as soon as they are available and with no quality

guarantees.

•	 QoS 1: This means the subscription request has been

granted at QoS 1. The broker delivers messages at least

once, meaning that the broker sends the message to

the client at least one time. The client sends a PUBACK

message back to the broker after receiving the message,

which acts as an acknowledgment.

•	 QoS 2: This means the subscription request has been

granted at QoS 2. The broker delivers messages exactly

once, which means that the broker guarantees that

the message is delivered once and only once to the

client. The client sends a PUBREC message back to the

broker after receiving the message, which acts as an

acknowledgment. The broker sends a PUBREL message

to the client after receiving the PUBREC message, and

the client sends a PUBCOMP message to the broker after

receiving the PUBREL message.

If the broker rejects any of the subscriptions in the SUBSCRIBE

message, the SUBACK message contains a failure return code

for that specific topic. The reason for the failure could be that

the client has insufficient permission to subscribe to the topic,

the topic is malformed, or another reason.

The failure return code is represented by 0x80 and indicates

that the subscription is not accepted by the broker. This can

Example of MQTT SUBACK Packet

MQTT Essentials Ebook

28

https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718068

happen if the client does not have sufficient permission to

subscribe to the topic, the topic is malformed, or there is

another issue with the subscription request. When a client

receives a failure return code, it should retry the subscription

with a different topic or QoS level or take appropriate action to

address the issue with the subscription request.

The SUBACK message is an acknowledgment message from

the broker to the client to confirm the subscriptions that have

been granted or rejected. The packet identifier enables the

client to match the acknowledgment to the original request,

while the return codes indicate the QoS levels at which the

broker has granted the subscriptions.

After a client has subscribed to topics of interest and received

messages published to those topics, it may eventually need

to unsubscribe. Let’s now explore the counterpart of the

SUBSCRIBE message, the UNSUBSCRIBE message, and

the corresponding UNSUBACK message that confirms the

unsubscription.

How to Use Unsubscribe in MQTT to Revoke
Subscriptions?

In MQTT, clients can unsubscribe from the topics they have

subscribed to by sending an UNSUBSCRIBE message to

the broker. Similar to SUBSCRIBE, this message includes a

packet identifier to uniquely identify it and a list of topics to

unsubscribe from.

Packet Identifier: Similar to the SUBSCRIBE message, the

packet identifier in the UNSUBSCRIBE message serves as an

internal MQTT identifier for message flow between the client

and broker. It ensures that the client and broker can keep

track of the message and its corresponding acknowledgment

messages.

List of Topics: The list of topics in the UNSUBSCRIBE message

can contain one or multiple topics from which the client wants

to unsubscribe. It is not necessary to specify the QoS level

since the broker will unsubscribe the topic regardless of the

QoS level with which it was originally subscribed.

What is MQTT Unsuback?

After receiving the UNSUBSCRIBE message, the broker sends

an UNSUBACK acknowledgment message to confirm the

removal of the client’s subscriptions. This message includes

the packet identifier of the UNSUBSCRIBE message and serves

as an acknowledgment that the broker has successfully

removed the topics from the client’s subscription list.

Return Code Return Code Response

0 Success - Maximum QoS 0

1 Success - Maximum QoS 1

2 Success - Maximum QoS 2

128 Failure

How MQTT SUBSCRIBE, SUBACK, and PUBLISH work

Example of MQTT UNSUBSCRIBE Packet

 www.hivemq.com

29



https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718072
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718077

Packet Identifier: The packet identifier in the UNSUBACK

message is the same as the one in the corresponding

UNSUBSCRIBE message. This ensures that the client can

identify the acknowledgment message and correlate it to the

original UNSUBSCRIBE message.

Return Codes: The UNSUBACK message includes a list of

return codes for each topic/QoS-pair that was unsubscribed. A

return code of 0 indicates a successful removal, while a return

code of 17 indicates an unsuccessful removal due to an invalid

or malformed topic. Other return codes may also be specified

for different error scenarios.

After receiving the UNSUBACK from the broker, the client can

assume that the subscriptions in the UNSUBSCRIBE message

are deleted.

These details provide a comprehensive understanding of how

clients can unsubscribe from topics and how brokers confirm

the removal of those subscriptions through the UNSUBSCRIBE

and UNSUBACK messages, respectively.

To summarize, MQTT provides a flexible and data-agnostic

approach to publishing messages between clients and

brokers. By using topics to filter messages, clients can quickly

and easily subscribe to the content that interests them. The

payload of each message can be customized to meet each

client’s specific needs, and MQTT’s support for various data

types makes it a versatile solution for many use cases.

Additionally, understanding the attributes of a PUBLISH

message, such as the QoS level and retain flag, can help clients

and brokers ensure that messages are delivered efficiently and

reliably.

Chapter 7: MQTT Topics and
Wildcards

What Are MQTT Topics and Their Role in
MQTT Message Filtering?

In MQTT, Topic refers to a UTF-8 string that filters messages

for a connected client. A topic consists of one or more levels

separated by a forward slash (topic level separator).

In comparison to a message queue, MQTT topics are very

lightweight. The client does not need to create the desired

topic before they publish or subscribe to it. The broker accepts

each valid topic without any prior initialization.

Examples of MQTT Topics

Here’re some examples of MQTT Topics:

1.	 myhome/groundfloor/livingroom/temperature:

This topic represents the temperature in the living room of

a home located on the ground floor.

2.	 USA/California/San Francisco/Silicon

Valley: This topic hierarchy can track or exchange

information about events or data related to the Silicon

Valley area in San Francisco, California, within the United

States.

Example of MQTT UNSUBACK Packet

How MQTT UNSUBACK works

Learn MQTT Topic Basics

MQTT Essentials Ebook

30

3.	 5ff4a2ce-e485-40f4-826c-b1a5d81be9b6/

status: This topic could be used to monitor the status

of a specific device or system identified by its unique

identifier.

4.	 Germany/Bavaria/car/2382340923453/

latitude: This topic structure could be utilized to share

the latitude coordinates of a particular car in the region of

Bavaria, Germany.

Best Practices for Using MQTT Topics

Here’re some best practices for using MQTT Topics:

•	 Each topic must contain at least one character.

•	 Topic strings can include empty spaces to allow for more

readable or descriptive topics.

•	 Topics are case-sensitive, meaning "myhome/

temperature" and "MyHome/Temperature" are considered

as two different topics.

•	 The forward slash alone is a valid topic and can be used

to represent a broad topic or serve as a wildcard for

subscribing to multiple topics simultaneously.

MQTT topics are key in establishing

communication between MQTT clients and

brokers. They enable efficient filtering and

routing of messages based on their content.

Properly defining and structuring topics is crucial

in ensuring effective data exchange and handling

within MQTT-based systems.

MQTT Wildcards and How to Use Them With
Topic Subscriptions?

In MQTT, wildcards provide a powerful mechanism for

subscribing to multiple topics simultaneously. When a client

subscribes to a topic, it can either subscribe to the exact topic

of a published message or utilize wildcards to broaden its

subscription. It’s important to note that wildcards can only be

used for subscription and not for publishing messages. There

are two types of wildcards: single-level and multi-level.

MQTT Wildcard – Single Level: +

The single-level wildcard is represented by the plus symbol

(+) and allows the replacement of a single topic level. By

subscribing to a topic with a single-level wildcard, any topic

that contains an arbitrary string in place of the wildcard will be

matched.

For example, a subscription to myhome/groundfloor/+/

temperature can produce the following results:

MQTT Wildcard – Multi Level:

The multi-level wildcard covers multiple topic levels. It is

represented by the hash symbol (#) and must be placed as the

last character in the topic, preceded by a forward slash.

When a client subscribes to a topic with a multi-level wildcard,

it receives all messages of a topic that begins with the pattern

before the wildcard character, regardless of the length or depth

of the topic. If the topic is specified as “#” alone, the client

receives all messages sent to the MQTT broker.

Example of how to use MQTT Wildcard Single Level +

Example of how to use MQTT Wildcard Multi Level #

 www.hivemq.com

31



However, it’s important to consider that subscribing with

a multi-level wildcard alone can be an anti-pattern if high

throughput is expected. Subscribing to a broad topic can result

in a large volume of messages being delivered to the client,

potentially impacting system performance and bandwidth

usage. Follow best practices to optimize topic subscriptions

and avoid unnecessary message overload.

MQTT Topics Beginning with $

In MQTT, topic naming flexibility is vast, allowing you to choose

names that suit your needs. However, there is one important

exception to be aware of: topics that start with a $ symbol

have a distinct purpose. These topics are not included in

the subscription when using the multi-level wildcard (#) as a

topic. Instead, topics beginning with $ are reserved for internal

statistics of the MQTT broker, providing valuable insights into

its operation.

Publishing messages to topics starting with $ is not permitted,

as these topics serve as a means for the MQTT broker to

expose internal information and statistics to clients. While

there is currently no official standardization for these topics, it

is common to use the prefix $SYS/ to denote such information,

although specific implementations of brokers may vary.

One recommended resource for understanding $SYS topics is

available in the MQTT GitHub wiki.

Here are a few examples of $SYS topics and the information

they can provide:

1.	 $SYS/broker/clients/connected: Indicates the number of

clients currently connected to the MQTT broker.

2.	 $SYS/broker/clients/disconnected: Shows the number of

clients that have disconnected from the MQTT broker.

3.	 $SYS/broker/clients/total: Represents the total count

of clients, both connected and disconnected, that have

interacted with the MQTT broker.

4.	 $SYS/broker/messages/sent: Provides the count of

messages sent by the MQTT broker.

5.	 $SYS/broker/uptime: Reflects the duration the MQTT

broker has been running.

These $SYS topics offer valuable insights into the

internal workings and performance of the MQTT

broker, enabling administrators and developers to

monitor and analyze crucial statistics.

By understanding the purpose and significance of topics

starting with $, you can effectively leverage this convention

to gain deeper visibility into the behavior and performance of

their MQTT infrastructure.

Exploring the Dynamic Nature of MQTT Topics

These are the basics of MQTT message topics. As you can see,

MQTT topics are dynamic and provide great flexibility. When

you use wildcards in real-world applications, there are some

challenges you should be aware of. We have collected the best

practices that we have learned from working extensively with

MQTT in various projects and are always open to suggestions

or a discussion about these practices. Use the comments to

start a conversation, Let us know your best practices or if you

disagree with one of ours!

MQTT Best Practices

Avoid Leading Forward Slash

While MQTT allows a leading forward slash in topics (e.g., /

myhome/groundfloor/livingroom), it introduces an unnecessary

topic level with a zero character at the front. This can cause

confusion (having a zero character at the front) without

providing any benefit. Hence, it’s recommended to exclude the

leading forward slash.

Never use spaces in an MQTT Topic

A space is the natural enemy of every programmer. Spaces

in topics can hinder readability and debugging efforts,

 MQTT Topic wildcard hash example

MQTT Essentials Ebook

32

https://github.com/mqtt/mqtt.org/wiki/SYS-Topics

particularly during troubleshooting scenarios. Moreover, UTF-8

has many different white space types. We advise against using

spaces and uncommon characters altogether in MQTT topics.

Keep MQTT topics short and concise

Remember that each topic is included in every message in

which it is used. To optimize network traffic and conserve

valuable resources, strive to make your topics concise. This

is especially crucial when dealing with resource-constrained

devices, where every byte counts.

Use only ASCII characters, and avoid non-printable

characters

To ensure consistent and accurate representation of topics,

it’s advisable to stick to ASCII characters. Non-ASCII UTF-8

characters may display incorrectly, making identifying typos

or character set-related issues challenging. Unless essential,

refrain from using non-ASCII characters in your MQTT topics.

Embed a unique identifier or the Client Id in topics

To enhance message identification and enforce authorization,

consider embedding a unique identifier or the client ID of the

publishing client in the topic. This allows you to determine

the message sender and control publishing permissions. For

example, a client with the client1 ID can publish to client1/

status but not to client2/status.

Avoid Subscribing to Wildcards (#)

Sometimes, it is necessary to subscribe to all messages that

are transferred over the broker. For example, to persist all

messages into a database. Do not subscribe to all messages

on a broker by using an MQTT client and subscribing to a

multi-level wildcard. Frequently, the subscribing client is not

able to process the load of messages that results from this

method (especially if you have a massive throughput). Our

recommendation is to implement an extension in the MQTT

broker. For example, with the HiveMQ extensions, you can

hook into the behavior of HiveMQ and add an asynchronous

routine to process each incoming message and persist it to a

database.

Embrace Extensibility

Topics in MQTT provide inherent flexibility, allowing for future

expansion and new features. Consider how your topic structure

can accommodate future enhancements or the addition of

new sensors or functionalities. Design your topics to facilitate

extensibility without substantially changing the overall topic

hierarchy. For example, if your smart-home solution adds new

sensors, it should be possible to add these to your topic tree

without changing the whole topic hierarchy.

Use specific topics, not general ones

Differentiate your topics to reflect specific data streams or

entities. Avoid the temptation to use a single topic for multiple

types of messages. For instance, if you have three sensors

in your living room, create topics like myhome/livingroom/

temperature, myhome/livingroom/brightness, and myhome/

livingroom/humidity instead of using a generic topic like

myhome/livingroom. This practice promotes clarity and

enables the utilization of advanced MQTT features such as

retained messages.

Documentation

Maintain comprehensive documentation detailing your

MQTT topics, including their purpose, expected message

payload, and any associated conventions or guidelines. This

aids in onboarding new team members and fosters better

collaboration.

Continuous Improvement

Regularly review and optimize your topic structure based

on evolving requirements and feedback from your MQTT

ecosystem. Embrace a continuous improvement mindset to

ensure efficient and scalable MQTT communication.

Security Considerations

Ensure that your topic structure and naming conventions don’t

inadvertently expose sensitive information. Implement proper

access controls and authentication mechanisms to protect

your MQTT communications.

 www.hivemq.com

33



https://www.hivemq.com/products/extensions/

By following these best practices, you can enhance your MQTT

infrastructure’s readability, maintainability, and security.

To summarize, MQTT topics serve as the backbone of

flexible and efficient message communication in MQTT. By

understanding the intricacies and applying best practices,

you can optimize your MQTT implementations for maximum

performance and scalability.

Chapter 8: MQTT Quality of Service
(QoS) 0,1, & 2

MQTT Quality of Service (QoS) is an agreement between the

message sender and receiver that defines the level of delivery

guarantee for a specific message.

MQTT provides three levels of QoS:

•	 At most once (QoS 0)

•	 At least once (QoS 1)

•	 Exactly once (QoS 2)

How to Examine Message Delivery in MQTT?

When discussing QoS in MQTT, it’s important to consider

message delivery from the publishing client to the broker and

from the broker to the subscribing client. These two aspects of

message delivery have subtle differences.

The client that publishes a message to the broker defines the

QoS level for the message during transmission. The broker

then transmits the message to subscribing clients using

the QoS level defined by each subscribing client during the

subscription process. If the subscribing client defines a lower

QoS level than the publishing client, the broker will transmit the

message with the lower QoS level.

Understanding how message delivery works in MQTT sets

the foundation for appreciating the significance of Quality

of Service (QoS) levels in ensuring reliable communication

between the publishing client, broker, and subscribing client.

Why is Quality of Service (QoS) Important?

Quality of Service (QoS) is crucial in MQTT due to its role in

providing the client with the ability to select a service level that

aligns with both the network reliability and the application’s

requirements. MQTT’s inherent capability to handle message

re-transmission and ensure delivery, even in unreliable network

conditions, makes QoS essential for facilitating seamless

communication in such challenging environments. By offering

different QoS levels, MQTT empowers clients to optimize

their network usage and achieve the desired balance between

reliability and efficiency.

Now that we understand the significance of Quality of Service

(QoS) in MQTT, let’s delve into the inner workings of QoS and

explore how it operates to ensure reliable message delivery in

varying network conditions.

How does QoS 0 work in MQTT?

At the lowest level, QoS 0 in MQTT offers a best-effort

delivery mechanism where the sender does not expect an

acknowledgment or guarantee of message delivery. This

means that the recipient does not acknowledge receiving the

message, and the sender does not store or re-transmit it. QoS

0, commonly called “fire and forget,” functions akin to the

underlying TCP protocol, where the message is sent without

further follow-up or confirmation.

How does QoS 1 work in MQTT?

In QoS 1 of MQTT, the focus is on ensuring message delivery at

least once to the receiver. When a message is published with

QoS 1, the sender keeps a copy of the message until it receives

a PUBACK packet from the receiver, confirming the successful

receipt. If the sender doesn’t receive the PUBACK packet

within a reasonable time frame, it re-transmits the message to

ensure its delivery.

Quality of Service level 0: delivery at most once

MQTT Essentials Ebook

34

https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718043
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718043

Upon receiving the message, the receiver can process it

immediately. For example, if the receiver is an MQTT broker,

it distributes the message to all subscribing clients and

responds with a PUBACK packet to acknowledge the receipt of

the message.

It’s important to note that in QoS 1, if the publishing client

sends the same message again, it sets a duplicate (DUP) flag.

However, this flag is used for internal purposes and is not

processed by the broker or client. Regardless of the DUP flag,

the receiver still sends a PUBACK packet to acknowledge the

receipt of the message, ensuring the sender is aware of the

successful delivery.

This approach of QoS 1 strikes a balance between reliability

and efficiency, guaranteeing that the message reaches the

receiver at least once while allowing for potential duplicates to

be handled appropriately.

How does QoS 2 work in MQTT?

QoS 2 offers the highest level of service in MQTT, ensuring

that each message is delivered exactly once to the intended

recipients. To achieve this, QoS 2 involves a four-part

handshake between the sender and receiver.

When a receiver gets a QoS 2 PUBLISH packet from a sender, it

processes the publish message accordingly and replies to the

sender with a PUBREC packet that acknowledges the PUBLISH

packet. If the sender does not get a PUBREC packet from the

receiver, it sends the PUBLISH packet again with a duplicate

(DUP) flag until it receives an acknowledgment.

Once the sender receives a PUBREC packet from the receiver,

the sender can safely discard the initial PUBLISH packet.

The sender stores the PUBREC packet from the receiver and

responds with a PUBREL packet, the receiver discards all

stored states and replies with a PUBCOMP packet.

Quality of Service level 1: delivery at least once

MQTT PUBACK packet

MQTT Quality of Service level 2: delivery exactly once

MQTT PUBREC Packet

 www.hivemq.com

35



https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718048
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718053

After the receiver gets the PUBREL packet, it can discard

all stored states and answer with a PUBCOMP packet (the

same is true when the sender receives the PUBCOMP). Until

the receiver completes processing and sends the PUBCOMP

packet back to the sender, the receiver stores a reference to

the packet identifier of the original PUBLISH packet. This step

is important to avoid processing the message a second time.

After the sender receives the PUBCOMP packet, the packet

identifier of the published message becomes available for

reuse.

When the QoS 2 flow is complete, both parties are sure that the

message is delivered and the sender has confirmation of the

delivery.

If a packet gets lost along the way, the sender is responsible

to retransmit the message within a reasonable amount of time.

This is equally true if the sender is an MQTT client or an MQTT

broker. The recipient has the responsibility to respond to each

command message accordingly.

Key Considerations for QoS in MQTT

While understanding QoS in MQTT, there are several important

aspects to keep in mind:

Downgrade of QoS

The QoS levels defined by the sender and receiver can differ.

The client sending the message to the broker defines the QoS

level, while the broker uses the QoS defined by the receiver

during subscription. For example, if the sender uses QoS 2

and the receiver subscribes with QoS 1, the broker delivers the

message to the receiver with QoS 1. This can result in multiple

deliveries of the same message to the receiver.

Packet identifiers are unique per client

Packet identifiers used for QoS 1 and 2 are unique between

a specific client and a broker within an interaction. However,

they are not unique across all clients. Once a flow is complete,

the packet identifier becomes available for reuse. This is why

the packet identifier does not need to exceed 65535 , as it

is unrealistic for a client to send more messages than that

without completing an interaction

Best Practices While Using MQTT Quality of
Service (QoS) 0,1, & 2

We are often asked for advice about how to choose the correct

QoS level. Selecting the appropriate QoS level depends on your

specific use case. Here are some guidelines to help you make

an informed decision:

Use QoS 0 when:

•	 You have a completely or mostly stable connection

between sender and receiver. A classic use case for QoS

0 is connecting a test client or a front end application to

an MQTT broker over a wired connection.

•	 You don’t mind if a few messages are lost occasionally.

The loss of some messages can be acceptable if the

data is not that important or when data is sent at short

intervals

•	 You don’t need message queuing. Messages are only

queued for disconnected clients if they have QoS 1 or 2

and a persistent session.

MQTT PUBREL Packet

MQTT PUBCOMP Packet

MQTT Essentials Ebook

36

https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718058
https://www.hivemq.com/blog/mqtt-essentials-part-7-persistent-session-queuing-messages/

Use QoS 1 when:

•	 You need to get every message and your use case can

handle duplicates. QoS level 1 is the most frequently used

service level because it guarantees the message arrives

at least once but allows for multiple deliveries. Of course,

your application must tolerate duplicates and be able to

process them accordingly.

•	 You can’t bear the overhead of QoS 2. QoS 1 delivers

messages much faster than QoS 2.

Use QoS 2 when:

•	 It is critical to your application to receive all messages

exactly once. This is often the case if a duplicate delivery

can harm application users or subscribing clients. Be

aware of the overhead and that the QoS 2 interaction

takes more time to complete.

Chapter 9: MQTT Persistent Sessions
and Clean Sessions

Persistent sessions in MQTT allow a client to maintain its

subscription and message state across multiple connections.

When a client establishes a persistent session with an MQTT

broker, the broker stores the client’s subscription information

and any undelivered messages intended for the client. This

way, if the client disconnects and reconnects later, it can

resume communication seamlessly. This chapter will dive

deep into how persistent sessions in MQTT enhance QoS

by enabling reliable message delivery, providing QoS level

guarantees, and facilitating efficient reconnection for clients,

even in the presence of intermittent connectivity or client

disconnections.

What are Persistent Sessions?

To receive messages from an MQTT broker, a client

establishes a connection and creates subscriptions to the

desired topics. In a non-persistent session, if the connection

between the client and broker is interrupted, the client loses its

subscriptions and needs to re-subscribe upon reconnection.

This can be burdensome for resource-constrained clients. To

address this issue, clients can request a persistent session

when connecting to the broker.

Persistent sessions store all relevant client

information on the broker, ensuring that

subscriptions and messages are retained

even when the client is offline. The session is

identified by the clientId provided by the client

during the connection establishment process.

What’s Stored in a Persistent Session?

In a persistent session, the broker stores the following

information (even if the client is offline). This information

becomes immediately available to the client upon

reconnection:

•	 Session existence (even if there are no subscriptions):

The broker retains information about the existence of the

session, allowing the client to resume its previous state

upon reconnection.

•	 All client’s subscriptions: The broker stores the list of

topics to which the client has subscribed. This ensures

the client does not need to re-subscribe to the same

topics every time it reconnects, saving valuable time and

resources.

•	 Flow of all messages in a Quality of Service (QoS) 1 or 2

where the client has not yet confirmed: The broker keeps

track of unacknowledged messages sent to the client at

QoS 1 or QoS 2 levels. These messages are stored in the

broker’s message queue and will be delivered to the client

upon reconnection, ensuring reliable message delivery.

•	 All new QoS 1 or 2 messages that the client missed

while offline: If the client was offline when QoS 1 or QoS

2 messages were published to subscribed topics, the

Queuing of QoS 1 and 2 Messages

All messages sent with QoS 1 and 2 are queued for

offline clients until the client is available again. However,

this queuing is only possible if the client has a persistent

session.

 www.hivemq.com

37



https://www.hivemq.com/products/mqtt-broker/
https://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices/
https://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices/
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://www.hivemq.com/blog/mqtt-essentials-part-7-persistent-session-queuing-messages/
https://www.hivemq.com/blog/mqtt-essentials-part-7-persistent-session-queuing-messages/

broker stores these missed messages. Once the client

reconnects, it receives the queued messages, preventing

any loss of important information.

•	 All QoS 2 messages received from the client that

are awaiting complete acknowledgment: For QoS 2

messages sent by the client, the broker keeps track of

their acknowledgment status. If any of these messages

are not fully acknowledged, the broker holds them until

the acknowledgment is complete.

Clean Sessions in MQTT and How to Use
Them to Start or End a Persistent Session

When establishing a connection to the broker, clients can

enable or disable a persistent session by setting the value

of the cleanSession flag. Here’s how it works: When the

cleanSession flag is set to true, the client explicitly requests

a non-persistent session. In this scenario, if the client

disconnects from the broker, all queued information and

messages from the previous persistent session are discarded.

The client starts with a clean slate upon reconnection.

On the other hand, when the cleanSession flag

is set to false, the broker creates a persistent

session for the client. This means that the broker

preserves all relevant information and messages

even if the client goes offline. The session

remains intact until the client explicitly requests

a clean session. If the cleanSession flag is set

to false and the broker already has a session

available for the client, it will utilize the existing

session and deliver any previously queued

messages to the client upon reconnection.

How Does A Client Know if a Session is Already
Stored?

In MQTT version 3.1.1 and beyond, the CONNACK message

sent by the broker in response to the client’s connection

request includes a session present flag. This flag serves as

an indicator for the client, informing it whether a previously

established session is still available on the broker. By

examining the session present flag, the client can determine

whether to establish a new session or reconnect to an existing

one.

Persistent Session on the Client Side:
Ensuring Local Message Persistence and
Acknowledgment

In addition to the broker storing a persistent session,

each MQTT client also plays a role in maintaining session

continuity. When a client requests the server to retain session

data, it assumes the responsibility and must store the

following information:

•	 Flow of all messages in a QoS 1 or 2 where the broker

has not yet confirmed: The client keeps track of

messages it has sent to the broker at QoS 1 or QoS 2

levels. These messages are stored locally until the broker

acknowledges their receipt or completion. By maintaining

these unconfirmed messages, the client ensures that it

can retransmit any messages if necessary and achieve

the desired level of reliability.

•	 All QoS 2 messages received from the broker awaiting

complete acknowledgment: When the broker sends QoS 2

messages to the client, they are received and processed

by the client. However, until the client acknowledges

the successful processing of these messages, the

client stores them locally. This ensures that the client

can handle any interruptions or disconnections while

maintaining the reliability and integrity of message

delivery.

•	 By storing these message-related details on the client

side, MQTT clients can actively maintain session

persistence and ensure the successful processing of

messages even in challenging network conditions.

MQTT Session Management Best Practices:
Enhancing Message Delivery and Resource
Efficiency

When working with MQTT, it’s essential to consider the

best practices for session management to optimize your

implementation. Here are some guidelines to help you

determine when to use a persistent session or a clean

session:

MQTT Essentials Ebook

38

Best Practices for MQTT Persistent Sessions

•	 Ensure Message Reliability: If your client needs to receive

all messages from a specific topic, even when they are

offline, a persistent session is the way to go. This ensures

that the broker queues the messages for the client and

delivers them promptly when the client reconnects.

•	 Resource Optimization: If your client has limited

resources, leveraging a persistent session is beneficial.

Storing the client’s subscription information on the

broker facilitates a quick restoration of interrupted

communication, reducing the burden on constrained

clients.

•	 Resume Publishes: A persistent session is necessary if

your client needs to resume publishing Quality of Service

(QoS) 1 and 2 messages after reconnecting. The broker

retains these messages until the client returns online,

ensuring their reliable delivery.

Best Practices for MQTT Clean Session

•	 Publish-Only Clients: A clean session is suitable if your

client only needs to publish messages and does not

require subscriptions to topics. In such cases, the broker

does not need to store session information or attempt to

transmit QoS 1 and 2 messages, simplifying the session

management process.

•	 Avoid Offline Message Retrieval: A clean session suffices

if your client does not need to receive missed messages

while offline. It eliminates the overhead of storing and

delivering messages that the client did not subscribe to

during its offline period.

MQTT Message Storage Duration: How Long
Does the MQTT Broker Store Messages?

People often ask how long the broker stores session

information and messages. The answer depends on various

factors and considerations:

•	 Memory Limit Constraint: Typically, the primary constraint

on message storage is the memory limit of the operating

system hosting the broker. Monitoring and allocating

sufficient resources to handle the expected message

volume is crucial.

•	 Use Case Specifics: The appropriate solution for

managing message storage duration varies based on

your use case. Consider factors such as the importance

of retaining messages, message expiration policies, and

regulatory or compliance requirements.

By following these best practices and considering the

above-mentioned factors, you can effectively manage MQTT

sessions, optimize message persistence, and ensure reliable

communication in your MQTT-based solutions.

Remember to incorporate these guidelines into your

implementation based on your unique requirements and

application needs.

To summarize, understanding and effectively utilizing

persistent sessions, queuing mechanisms, and proper session

management practices, we can harness the full potential

of MQTT and build robust, scalable, and reliable IoT and

messaging applications.

Chapter 10: MQTT Retained
Messages

A retained message is a normal MQTT message with the

retained flag set to true. The broker stores the last retained

message and the corresponding QoS for that topic. Each client

that subscribes to a topic pattern that matches the topic of the

retained message receives the retained message immediately

after they subscribe. The broker stores only one retained

message per topic.

How are Retained Messages Different from
Normal MQTT Messages?

Retained messages are a valuable feature in

MQTT that mitigates uncertainty regarding

message publication. By enabling the retention

of the most recent message on a topic,

subscribers can stay informed about the current

state, even during periods of inactivity.

 www.hivemq.com

39



In MQTT, it is important to understand that the publisher

of a message cannot guarantee that the subscribing client

will receive the message. The publisher’s responsibility lies

in ensuring the safe delivery of the message to the broker.

Similarly, the subscribing client cannot determine when the

publishing client will send a new message related to their

subscribed topics. The time interval between messages can

vary significantly, ranging from a few seconds to several

minutes or even hours. As a result, the subscribing client

remains unaware of the current topic status until a new

message is published. This is where retained messages play a

vital role.

Retained messages provide a solution to the challenge

mentioned above. When a client publishes a message with

the “retained” flag set to true, the broker retains the message.

Consequently, any client subscribing to the corresponding

topic will receive the most recent retained message, even if no

recent publications have occurred.

In essence, retained messages offer subscribers a snapshot of

the last-known state of a topic, ensuring access to the latest

relevant information regardless of publishing frequency.

Structure of a Retained Message in MQTT

An MQTT retained message is a standard message that

includes the retained flag set to true, signifying its importance.

When a client publishes a retained message, the broker stores

it along with the corresponding Quality of Service (QoS) for

a specific topic. Subscribing clients immediately receive the

retained message when they subscribe to a topic pattern that

matches the retained message’s topic.

It is worth noting that the broker retains only one message per

topic.

Even if a subscribing client uses wildcards in their topic

pattern, they can still receive a retained message that may not

be an exact match for the topic.

For instance, if Client A publishes a retained message to

myhome/livingroom/temperature and later Client B subscribes

to myhome/#, Client B will receive the retained message

for myhome/livingroom/temperature immediately after

subscribing to myhome/#. By recognizing the retained flag

set to true, the subscribing client can process the retained

messages according to its requirements.

Retained messages are crucial in providing newly-subscribed

clients with immediate status updates upon subscribing to

a topic, eliminating the need to wait for subsequent updates

from publishing clients. Essentially, a retained message

represents the last known valid value for a particular topic. It

does not necessarily have to be the latest value, but it must be

the most recent message with the retained flag set to true.

Something else important to emphasize, retained messages

operate independently of persistent sessions, which we

discussed in Part 7 of the series. Once the broker stores a

retained message, there’s only one way to remove it. We will

discuss that shortly in an upcoming section.

Now that you understand the structure of retained messages,

let’s learn more about managing them.

How to Send a Retained Message in MQTT?

As a developer, sending a retained message is a

straightforward process. To mark a message as retained, all

you need to do is set the retained flag of your MQTT publish

message to true. This flag signals the broker to retain the

message and make it available to subscribers. The good news

is that most MQTT client libraries provide a convenient and

user-friendly way to enable this flag, streamlining the process.

By leveraging this feature, developers can ensure that critical

information persists and remains accessible to subscribers,

even if they join the network later or experience temporary

connectivity issues. Retained messages offer a powerful

mechanism for sharing important data and enabling seamless

communication in MQTT-based systems.

How to Delete Retained Messages in MQTT?

There is only one way to delete the retained message of a

topic. To achieve this, simply publish a retained message with

MQTT Essentials Ebook

40

https://www.hivemq.com/blog/mqtt-essentials-part-7-persistent-session-queuing-messages/
https://www.hivemq.com/blog/mqtt-essentials-part-4-mqtt-publish-subscribe-unsubscribe/
https://www.hivemq.com/blog/mqtt-essentials-part-4-mqtt-publish-subscribe-unsubscribe/

a zero-byte payload to the topic where the retained message

is stored. When the broker receives this special retained

message, it identifies it as a request for deletion and promptly

removes the retained message associated with that topic. As

a result, new subscribers will no longer receive the previously

retained message for that particular topic.

It’s worth noting that in many cases, explicitly deleting retained

messages may not be necessary. This is because each new

retained message automatically overwrites the previous one

for the same topic. Therefore, if you publish a new retained

message on a topic, it will replace and supersede any existing

retained message, effectively achieving the same outcome

as deleting the previous message. This behavior ensures

that subscribers receive the most up-to-date and relevant

information, eliminating the need for manual deletion in most

scenarios.

Why and When Should You Use Retained
Messages?

Retained messages offer valuable benefits in various

scenarios, particularly when you need newly-connected

subscribers to receive messages promptly without waiting for

the next message publication.

This is particularly advantageous for delivering real-time

status updates of components or devices on specific topics.

For instance, let’s consider the example of a device named

device1, whose status is published on the topic “myhome/

devices/device1/status”. By utilizing retained messages, new

subscribers to this topic instantly receive the device’s status

(such as online or offline) immediately after subscribing.

Similarly, this applies to clients that transmit data periodically,

such as temperature readings, GPS coordinates, and other

relevant information. Without retained messages, newly-

subscribed clients would remain unaware of the latest updates

between message intervals. By leveraging retained messages,

you can seamlessly provide connecting clients with the most

recent and accurate value, ensuring they have immediate

access to critical information.

Closing the Loop: The Lasting Impression of
Retained Messages in MQTT’s Ecosystem

As you can see, retained messages play a crucial role in MQTT

communication by addressing the challenge of uncertain

message delivery and providing immediate access to the last-

known state of a topic. By enabling the retention of the most

recent message on a topic, subscribers can stay informed

about the current status, even during periods of inactivity.

Retained messages are beneficial for providing status

updates, ensuring newly-subscribed clients receive relevant

information without having to wait for the subsequent

message publication. By leveraging retained messages, MQTT

empowers efficient and reliable communication between

clients and brokers, enhancing the overall effectiveness of IoT

and messaging applications.

Chapter 11. MQTT Last Will and
Testament (LWT)

Last Will and Testament (LWT) is a powerful feature in

MQTT that allows clients to specify a message that will be

automatically published by the broker on their behalf, if or

when an unexpected disconnection occurs. It provides a

reliable means of communication and ensures that clients can

gracefully handle disconnections without leaving topics in an

inconsistent state. This feature is particularly valuable when

clients must notify others of their unavailability or convey

important information upon an unexpected disconnection.

What is the Purpose of Last Will and
Testament (LWT) in MQTT?

In scenarios where unreliable networks are prevalent, it is

common for MQTT clients to experience occasional unintended

breaks, which can happen due to loss of connection or

depleted batteries. Understanding the type of disconnection

(graceful - with a disconnect message, or ungraceful - without

a disconnect message) is crucial for taking appropriate

actions.

 www.hivemq.com

41



The Last Will and Testament feature in

MQTT offers a solution for clients to respond

effectively to ungraceful disconnects and

ensure proper handling of such events.

The LWT allows clients to notify others about their unexpected

disconnections. When a client connects to a broker, it can

specify a last-will message. This message follows the

structure of a regular MQTT message structure, including a

topic, retained message flag, Quality of Service (QoS), and

payload. The broker stores this message until it detects an

ungraceful disconnect from the client. Upon detecting the

disconnection, the broker broadcasts the last will message to

all subscribed clients of the corresponding topic. The broker

discards the stored LWT message if the client disconnects

gracefully using the DISCONNECT message.

By utilizing LWT, you can implement various strategies to

handle client disconnections and inform other clients about the

offline status.

How to Configure a Last Will and Testament
(LWT) Message for an MQTT Client?

To specify an LWT message for an MQTT client, you include

it in the CONNECT message, which is used to initiate the

connection between the client and the broker.

When does the MQTT Broker Send the LWT
Message?

According to the MQTT 3.1.1 specification, the broker sends

a client’s Last Will and Testament (LWT) message in the

following situations:

1.	 I/O error or network failure: If the broker detects any

issues with the input/output or network connection, it will

distribute the LWT message.

2.	 Failed communication within Keep Alive period: If the

client fails to communicate with the broker within the

specified Keep Alive period, the LWT message is sent.

In Part-10 of our MQTT Essentials, we will explore the

concept of MQTT Keep Alive time and delve into its

significance.

3.	 Client closes connection without DISCONNECT: When the

client terminates the network connection without sending

a DISCONNECT packet, the broker ensures the LWT

message is distributed.

4.	 Broker closes connection due to protocol error: If the

broker closes the network connection due to a protocol

error, it will send the LWT message.

Understanding when and why the broker sends the Last Will

and Testament (LWT) messages lays the groundwork for

implementing best practices in leveraging this feature, which

we will delve into in the next section.

DISCONNECT MQTT Packet

CONNECT MQTT Packet

MQTT Essentials Ebook

42

https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://www.hivemq.com/blog/mqtt-essentials-part-10-alive-client-take-over/

When to Use Last Will and Testament (LWT) in
MQTT?

LWT proves invaluable for alerting subscribed clients about an

abrupt disconnection of a client. It becomes a powerful tool for

storing and communicating client state on specific topics when

combined with retained messages.

For instance, by setting a lastWillMessage with Offline

payload, enabling the lastWillRetain flag, and specifying the

lastWillTopic as client1/status, followed by publishing an

Online retained message to the same topic, client1 can keep

newly-subscribed clients informed about its online status.

Should client1 disconnect unexpectedly, the broker publishes

the LWT message with Offline payload as the new retained

message, ensuring that clients subscribing to the topic while

client1 is offline receive the LWT message and stay up to date

on its current status.

LWT not only notifies subscribed clients about unexpected

disconnections but also assists in maintaining the system’s

integrity by providing valuable information on client states.

Combining LWT with retained messages allows you to create

a robust solution that stores and communicates the latest

client state on specific topics, ensuring reliable updates for

all subscribers. This approach enables seamless integration

and synchronization between clients, enhancing the overall

resilience and functionality of the MQTT network.

The Importance of Last Will and Testament in
MQTT

The Last Will and Testament (LWT) feature in MQTT is crucial

in ensuring efficient communication and maintaining system

integrity in the event of unexpected client disconnections.

By combining LWT with retained messages, developers

can store and communicate client state on specific topics,

providing valuable information to subscribed clients. LWT

empowers MQTT networks with enhanced resilience, seamless

integration, and reliable updates, making it a powerful tool for

various applications. By understanding the benefits and best

practices of LWT, you can leverage this feature to create robust

and effective MQTT solutions.

Chapter 12: MQTT Keep Alive and
Client Take-Over

Keep Alive is a feature of the MQTT protocol that allows

an MQTT client to maintain its connection with a broker

by sending regular control packets called PINGREQ to the

broker. Let’s dive into MQTT Keep Alive’s critical role in mobile

networks, and in maintaining a robust and efficient MQTT

connection.

What is MQTT Keep Alive and Why It’s
Important?

The Keep Alive mechanism in MQTT ensures the connection’s

liveliness and provides a way for the broker to detect if a client

becomes unresponsive or disconnected.

When a client establishes a connection with an MQTT broker,

it negotiates a Keep Alive value, which is a time interval

expressed in seconds. The client must send a PINGREQ packet

to the broker at least once within this interval to indicate its

presence and keep the connection alive. Upon receiving a

PINGREQ packet, the broker responds with a PINGRESP packet,

confirming that the connection is still active.

The MQTT Keep Alive mechanism is important

for connection monitoring, efficient resource

utilization, detecting network failures, graceful

disconnection, etc.

Now, let’s establish why the kept alive feature is so important

by delving into the issue of half-open TCP connections and

how it poses a challenge within MQTT, particularly in mobile

networks.

The Problem of Half-Open TCP Connections in MQTT

The problem of half-open TCP connections arises within

MQTT, which relies on the Transmission Control Protocol

(TCP) to ensure “reliable, ordered, and error-checked” packet

transfer over the internet. Despite TCP’s robustness, there are

instances where the synchronization between communicating

parties can falter due to crashes or transmission errors.

 www.hivemq.com

43



https://www.hivemq.com/blog/mqtt-essentials-part-8-retained-messages/
https://www.hivemq.com/blog/mqtt-essentials-part-8-retained-messages/
https://www.hivemq.com/blog/mqtt-essentials-part-3-client-broker-connection-establishment/
https://www.hivemq.com/blog/mqtt-essentials-part-3-client-broker-connection-establishment/
https://www.hivemq.com/blog/mqtt-essentials-part-3-client-broker-connection-establishment/
https://en.wikipedia.org/wiki/Transmission_Control_Protocol

In TCP, this state of an incomplete connection is referred to as

a half-open connection, where one side of the communication

remains unaware of the other side’s failure. The connected side

persistently attempts to send messages while eagerly awaiting

acknowledgments.

Andy Stanford-Clark, the inventor of the MQTT protocol,

highlights that the issue of half-open connections becomes

more pronounced in mobile networks. While TCP/IP

theoretically notifies users when a socket breaks, practical

scenarios, particularly on mobile and satellite links, involve the

“faking” of TCP over the air with added headers at each end.

This practice can lead to a phenomenon known as a “black

hole” TCP session, where the connection appears open but, in

reality, discards any transmitted data.

How Does MQTT Keep Alive Work?

To address the challenge of half-open connections and

enable continuous assessment of connection status, MQTT

incorporates a vital feature called Keep Alive. This mechanism

guarantees that the connection between the MQTT broker

and client remains active and that both parties know their

connection status.

When a client establishes a connection with the broker, it

specifies a time interval in seconds known as the Keep Alive

duration. This duration sets the maximum allowed time gap

during which the broker and client may not exchange any

communication. According to the MQTT specification, the Keep

Alive interval is defined as follows:

"The Keep Alive ... is the maximum time

interval permitted to elapse between the point

at which the Client finishes transmitting one

Control Packet and the point it starts sending

the next. It is the responsibility of the Client

to ensure that the interval between Control

Packets being sent does not exceed the Keep

Alive value. In the absence of sending any

other Control Packets, the Client MUST send a

PINGREQ Packet."

As long as messages are transmitted frequently within the

Keep Alive interval, there is no need to send an additional

message to verify the connection status. However, if the

client remains inactive during the Keep Alive period, it must

send a PINGREQ packet to the broker as a confirmation of its

availability and to ensure that the broker is still accessible.

If a client fails to send any messages or a PINGREQ packet

within one and a half times the Keep Alive interval, the broker

is responsible for disconnecting the client. Likewise, the client

should close the connection if it does not receive a response

from the broker within a reasonable timeframe.

By employing the Keep Alive mechanism, MQTT enhances

connection stability, mitigates the risks associated with half-

open connections, and facilitates efficient communication

between brokers and clients in various network conditions.

How Does Keep Alive Ensure Connection
Vitality?

Let’s examine the flow of Keep Alive messages to gain a

deeper understanding of the Keep Alive mechanism. The Keep

Alive feature utilizes two packets: PINGREQ and PINGRESP.

What is PINGREQ in MQTT Keep Alive?

"Although TCP/IP, in theory, notifies you when a socket

breaks, in practice, particularly on things like mobile and

satellite links, which often “fake” TCP over the air and put

headers back on at each end, it’s quite possible for a TCP

session to “black hole,” i.e. it appears to be open still, but

is just dumping anything you write to it onto the floor."

Andy Stanford-Clark on the topic "Why is the keep-alive

needed?" Source

MQTT Essentials Ebook

44

https://en.wikipedia.org/wiki/TCP_half-open
https://groups.google.com/forum/#!msg/mqtt/zRqd8JbY4oM/XrMwlQ5TU0EJ

When a client wants to signal its continued presence and

activity to the broker, it sends a PINGREQ packet. This packet

is a “heartbeat” message indicating that the client is still

alive. If the client has not sent any other type of packet, such

as a PUBLISH or SUBSCRIBE packet, it must send a PINGREQ

packet to the broker. The client can choose to send a PINGREQ

packet at any time to verify the ongoing vitality of the network

connection. Notably, the PINGREQ packet does not contain any

payload.

What is PINGRESP in MQTT Keep Alive?

Upon receiving a PINGREQ packet from a client, the broker is

obligated to respond with a PINGRESP packet. The PINGRESP

packet serves as an acknowledgment from the broker to the

client, confirming its availability and continued connection.

Like the PINGREQ packet, the PINGRESP packet does not

include a payload.

How Can I Customize Keep Alive Settings for
Optimal Performance?

•	 If the broker does not receive a PINGREQ packet or any

other packet from a client within the expected time frame,

the broker will close the connection and dispatch the Last

Will and Testament message (LWT) message if the client

has specified one.

•	 The MQTT client is responsible for setting an appropriate

Keep Alive value. For instance, the client can adjust the

keep-alive interval based on its current signal strength,

optimizing the connection for its specific circumstances.

•	 Importantly, the maximum Keep Alive interval is 18 hours,

12 minutes, and 15 seconds. Conversely, setting the Keep

Alive interval to 0 effectively deactivates the Keep Alive

mechanism, removing its influence on the connection’s

stability and management.

What is Client Take-Over in MQTT?

In the MQTT protocol, when a client becomes disconnected, it

typically attempts to reconnect. However, there are instances

when the broker still maintains a half-open connection for that

client. In such cases, when a client, which the MQTT broker

perceives as online, initiates a reconnection and performs a

`client take-over, the broker takes necessary action. It promptly

terminates the previous connection associated with the same

client (identified by the client identifier) and establishes a fresh

connection with the client. This intelligent behavior ensures

that half-open connections do not impede the disconnected

client from successfully re-establishing its connection. By

seamlessly managing client take-over, MQTT guarantees

smooth connectivity and resilient communication in the face of

intermittent network interruptions.

How Does Keep Alive and Client Take-Over
Enhance MQTT Performance?

The Keep Alive feature and client take-over mechanism are

vital components of MQTT that ensure reliable and efficient

communication in various scenarios. By implementing Keep

Alive messages through PINGREQ and PINGRESP packets,

MQTT enables clients to actively signal their presence and

verify network connectivity. This mechanism prevents half-

open connections and allows for timely detection of inactive or

lost connections.

Furthermore, client take-over facilitates seamless

reconnection for disconnected clients. When a client initiates

a reconnection, the MQTT broker intelligently closes any

existing half-open connection associated with that client and

establishes a fresh connection. This process ensures that

disconnections do not hinder the client’s ability to regain

connectivity and resume communication smoothly.

 www.hivemq.com

45



https://www.hivemq.com/blog/mqtt-essentials-part-9-last-will-and-testament/
https://www.hivemq.com/blog/mqtt-essentials-part-9-last-will-and-testament/

MQTT clients must set appropriate Keep Alive values, considering factors such as signal strength and network conditions. This

allows for optimal management of the Keep Alive mechanism and ensures efficient resource utilization.

Understanding the intricacies of the Keep Alive feature and client take-over in MQTT empowers developers to build robust and

resilient MQTT applications. By leveraging these capabilities, MQTT facilitates the creation of reliable, real-time IoT and messaging

solutions that thrive even in challenging network environments.

Chapter 13: Introduction to MQTT 5 Protocol

MQTT has solidified its footprint by connecting numerous constrained devices across multiple deployments, establishing a vast

network of connected systems and standalone devices. From connected cars and manufacturing systems, logistics to enterprise

chat applications, and mobile apps, MQTT’s widespread use has spurred demands for its evolution. MQTT 5 answers this call,

promising an extensive array of exciting new features and improvements.

In this chapter, we provide an in-depth exploration of MQTT

5. We discuss topics ranging from foundational changes in

the protocol to user properties, shared subscriptions, payload

format description, request-response pattern, topic alias,

enhanced authentication, and flow control.

Design Goals of MQTT 5

The OASIS Technical Committee (TC), tasked with defining

and standardizing MQTT, faced the complex challenge of

adding long-desired features without increasing overhead or

decreasing ease of use. They sought to improve performance

and scalability without inducing unnecessary complexity. After

much deliberation, the TC decided on a host of functional

objectives for MQTT 5, aimed at enhancing scalability,

formalizing common patterns such as capability discovery and

request-response, and enabling extensibility mechanisms like

user properties.

Unlocking the Power of IoT with MQTT 5: New
Features and Improvements

One of the significant improvements in MQTT 5 is the

introduction of enhanced authentication mechanisms. These

provide a more robust security framework critical in today’s

world, where the risk of cyber-attacks is always looming. With

MQTT 5, users have more options for securing their devices

and data, including using more sophisticated encryption

algorithms and key management techniques.

In addition, MQTT 5 introduced Shared Subscriptions, a feature

that allows load balancing of messages across multiple

client instances. This ensures that people can manage many

messages effectively without overloading individual clients.

The shared subscriptions feature is practical in scenarios

where many devices are transmitting data concurrently.

MQTT Essentials Ebook

46

https://www.hivemq.com/resources/enabling-the-connected-car/
https://www.hivemq.com/solutions/transportation-and-logistics/

Further, MQTT 5 also introduces the concept of message

properties, allowing additional metadata to be included with

each message. This is useful for providing context about the

transmitted data, such as timestamps, location information, or

device status.

As described, the transition from MQTT 3.1.1 to MQTT 5 was

not a simple version number update but rather a significant

leap in the protocol’s capabilities, addressing several areas

of improvement. The result is a more robust, reliable, and

scalable protocol better suited to modern IoT applications’

needs.

It’s important to understand these changes and improvements

when considering MQTT for IoT applications, as they can

significantly affect the performance and reliability of your IoT

system. So, whether you’re a developer, a systems integrator,

or an end user, the step to MQTT 5 is a key advancement in

evolving IoT communication protocols.

While MQTT 5 brings numerous benefits, it also

demands careful implementation. Like any

technology upgrade, it is critical to evaluate

the implications on your specific use case

and ensure the transition is controlled and

managed. Understanding the benefits and

potential challenges of MQTT 5 will help ensure

a successful implementation, maximizing

the potential benefits of this powerful IoT

communication protocol.

As we look to the future, MQTT remains a vital player in IoT.

With MQTT 5, developers now have even more flexibility in

designing and implementing solutions that can handle the

diverse requirements of modern IoT systems.

The evolution of MQTT doesn’t stop at version 5. The

MQTT Technical Committee is already working on further

enhancements and features that will continue to advance the

protocol’s capabilities. This ongoing work demonstrates the

strong commitment of the MQTT community to the continued

growth and advancement of this technology, ensuring

that MQTT will remain a relevant and powerful tool for IoT

communication in the foreseeable future.

As technology continues to evolve, and as the needs of IoT

systems grow and change, so will MQTT. It’s critical for anyone

working in the IoT space to stay abreast of these developments

to ensure they are leveraging the full power of MQTT and other

related technologies to deliver the most effective, reliable, and

secure IoT solutions possible.

What Properties Are Available in MQTT 5 Header &
Reason Codes?

Undoubtedly, one of the most transformative and flexible

features introduced in MQTT 5 is the ability to incorporate

custom key-value properties in the MQTT header. This

capability can potentially revolutionize many deployments,

and is of such significance that it warrants an entire chapter

dedicated to it. Like protocols such as HTTP, MQTT clients and

brokers can add an unlimited number of custom or pre-defined

headers to carry metadata. This metadata is adaptable and

can be tailored to specific application data, with pre-defined

headers predominantly employed in the execution of most new

MQTT features.

Additionally, MQTT packets now include Reason Codes,

signifying the occurrence of a pre-defined protocol error.

Traditionally found on acknowledgment packets, these Reason

Codes facilitate error interpretation and potentially aid in

devising remedies by both clients and brokers.

Occasionally referred to as Negative Acknowledgments, these

Reason Codes can be found on a range of MQTT packets, such

as:

•	 CONNACK

•	 PUBACK

•	 PUBREC

•	 PUBREL

•	 PUBCOMP

•	 SUBACK

•	 UNSUBACK

•	 AUTH

•	 DISCONNECT

 www.hivemq.com

47



https://www.hivemq.com/blog/mqtt5-essentials-part6-user-properties/

The range of Reason Codes for Negative Acknowledgments

varies widely, spanning from “Quota Exceeded” to “Protocol

Error”. It is the joint responsibility of clients and brokers to

decode and comprehend these newly introduced Reason

Codes, further enriching the overall MQTT experience.

Having established the custom key-value properties and

Reason Codes, let’s explore how MQTT handles unsupported

features and uses CONNACK return codes.

Responding to Unsupported Features with
CONNACK Return Codes

As MQTT’s popularity surged, various MQTT implementations

began to emerge, proposed by a diverse range of companies.

However, not all these implementations adhere strictly to

the complete MQTT specification. Certain features, such as

QoS 2, retained messages or persistent sessions may not

consistently be implemented. In contrast, HiveMQ remains

wholly conformed to the MQTT specification, comprehensively

supporting all features. Pivoting toward the subject of

unsupported features, MQTT 5 presents an ingenious

resolution. It enables those implementations that are not

entirely complete, often seen in SaaS offerings, to indicate the

broker’s inability to support certain features. The onus is then

placed upon the client to ensure these unsupported features

are not utilized. The broker employs pre-defined headers in the

CONNACK packet, sent in response to the client’s CONNECT

packet, to communicate the lack of support for specific

features. These headers can also be leveraged to notify the

client that they are not permitted to use certain features.

What are the Pre-Defined Headers Available in
MQTT 5?

Here are the pre-defined headers available in MQTT v5 for

indicating unimplemented features or features not authorized

for client use:

Pre-Defined Header Data Type Description

Retain Available Boolean Are retained messages available?

Maximum QoS Number
The maximum QoS the client is allowed to use for

publishing messages or subscribing to topics

Wildcard available Boolean If Wildcards can be used for topic subscriptions

Subscription identifiers available Boolean
If Subscription Identifiers are available for the MQTT

client

Shared Subscriptions available Boolean
If Shared Subscriptions are available for the MQTT

client

Maximum Message Size Number
Defines the maximum message size a MQTT client

can use

Server Keep Alive Number
The Keep Alive Interval the server supports for the

individual client

MQTT Essentials Ebook

48

https://www.hivemq.com/blog/mqtt-essentials-part-8-retained-messages/
https://www.hivemq.com/blog/mqtt-essentials-part-8-retained-messages/
https://www.hivemq.com/blog/mqtt-client-load-balancing-with-shared-subscriptions/
https://www.hivemq.com/blog/mqtt-essentials-part-10-alive-client-take-over/

These return codes represent a significant stride forward

in expressing the permissions of individual MQTT clients.

However, this new capability carries an inherent trade-off;

MQTT clients must implement the interpretation of these

codes independently, and must ensure that application

developers avoid using features unsupported by the broker, or

those the client lacks permission for.

As a note of assurance, HiveMQ is fully

compliant with all MQTT 5 features, ensuring

these custom headers would only be utilized

at the administrator’s discretion for setting

permissions in deployments.

Enhanced Session Management: From Clean
Session to Clean Start in MQTT 5

The concept of “Clean Session,” a prominent feature in MQTT

3.1.1, is now succeeded by “Clean Start” in MQTT v5. The

Clean Session feature was highly used in MQTT 3.1.1 by clients

that either had temporary connections or didn’t subscribe

to messages. Upon connecting to the broker, the client was

required to send a CONNECT packet with either the Clean

Session flag enabled or disabled. If enabled, it indicated to

the broker that all client data should be discarded when the

underlying TCP connection was severed or upon the client’s

decision to disconnect from the broker. Moreover, if a previous

session was associated with the client identifier on the broker,

a Clean Session CONNECT packet compelled the broker to

discard the prior data.

MQTT 5 introduces the Clean Start option, signaled by the

Clean Start flag in the CONNECT message. With this flag, the

broker dismisses any prior session data, and the client initiates

a new session. However, the session isn’t automatically

cleared when the TCP connection is closed between the client

and the server. To prompt the deletion of the session post-

disconnection, a new header field, Session Expiry Interval,

must be set to 0.

This revised Clean Start functionality enhances and simplifies

MQTT’s session handling, offering more flexibility and easier

implementation compared to the former Clean Session/

persistent session concept. In MQTT 5, all sessions persist

unless the “Session Expiry Interval” is set to 0. Session

deletion takes place either after the interval timeout or when

the client reconnects using Clean Start.

AUTH Packet in MQTT 5?

MQTT 5 brings forth a new packet type: the AUTH

packet. Serving as a vital tool in implementing non-trivial

authentication mechanisms, we anticipate this packet to be

integral in production environments. It’s crucial to understand

that this novel packet can be dispatched by both brokers and

clients post-connection establishment. It enables the use of

intricate challenge/response authentication methods, such

as SCRAM or Kerberos as outlined in the SASL framework

and is also compatible with cutting-edge IoT authentication

methods like OAuth. Importantly, the AUTH packet allows for

the re-authentication of MQTT clients without requiring the

termination of the connection.

MQTT 5: Enriching MQTT with UTF-8 String
Pairs

To accommodate the custom headers, a new data type was

necessitated, and thus, the UTF-8 string pairs were introduced.

Essentially, a string pair is a key-value structure wherein both

the key and value are of the String data type. At present, this

data type is primarily used for custom headers.

This novel addition expands the spectrum of MQTT data types

utilized on the wire to a total of seven:

1.	 Bit

2.	 Two Byte Integer

3.	 Four Byte Integer

4.	 UTF-8 Encoded String

5.	 Variable Byte Integer

6.	 Binary Data

7.	 UTF-8 String Pair

For most application users, Binary Data and UTF-8

Encoded Strings remain the go-to data types within

their MQTT library APIs. However, with the onset of

MQTT 5, the UTF-8 String Pairs are anticipated to

gain frequent usage.

 www.hivemq.com

49



https://www.hivemq.com/blog/mqtt-essentials-part-3-client-broker-connection-establishment/
https://www.hivemq.com/blog/mqtt5-essentials-part4-session-and-message-expiry/
https://www.hivemq.com/blog/mqtt-security-fundamentals-advanced-authentication-mechanisms/
https://www.hivemq.com/blog/mqtt-security-fundamentals-advanced-authentication-mechanisms/
https://en.wikipedia.org/wiki/Simple_Authentication_and_Security_Layer
https://www.hivemq.com/blog/mqtt-security-fundamentals-oauth-2-0-mqtt/

While the remaining data types might not be directly visible to

users, they are leveraged on the wire to construct valid MQTT

packets by MQTT client libraries and brokers.

How Does MQTT 5 Enhance Communication
with Bi-directional DISCONNECT Packets?

Under the MQTT 3.1.1 framework, clients could gracefully

terminate their connection by dispatching a DISCONNECT

packet before closing the underlying TCP connection. However,

there was no provision for the MQTT broker to inform the

client of a potential issue that necessitates closing the TCP

connection. This shortcoming has been addressed in the new

protocol version.

In the enhanced MQTT, the broker is authorized to transmit a

DISCONNECT packet before severing the socket connection.

This provision empowers the client to understand the cause

behind the disconnection and devise a suitable response

accordingly. While the broker is not mandated to disclose the

exact reason (for security purposes, for instance), this feature

benefits developers as it provides valuable insight into why the

broker terminated a connection.

Another valuable addition is that DISCONNECT packets can

now carry Reason Codes, simplifying the process of revealing

the disconnection’s rationale, such as in the case of invalid

permissions.

Revamping QoS 1 and 2 in MQTT 5:
Eliminating Retries for Healthy Connections

MQTT employs persistent TCP connections (or similar

protocols with identical assurances) for the underlying

transport. A robust TCP connection ensures bi-directional

connectivity with exactly-once and in-order guarantees,

meaning all MQTT packets dispatched by clients or brokers

will be received at the other end. When the TCP connection is

disrupted while the message is in transit, QoS 1 and 2 ensure

message delivery across multiple TCP connections.

Under the MQTT 3.1.1 protocol, re-delivery of MQTT messages

was permissible even when the TCP connection was healthy.

This often proved detrimental in practice, risking overloading

already burdened MQTT clients. Consider a scenario where an

MQTT client takes 11 seconds to process a message received

from a broker to acknowledge the packet after processing.

There is no tangible advantage if the broker retransmits the

message after a 10-second timeout. This approach merely

consumes valuable bandwidth and further overwhelms the

MQTT client.

With the advent of MQTT 5, retransmission of MQTT messages

for healthy TCP connections is disallowed for both brokers

and clients. However, brokers and clients must resend

unacknowledged packets when the TCP connection has been

severed. Thus, the QoS 1 and 2 guarantees remain as vital as

they were in MQTT 3.1.1.

If your use case depends on retransmission packets (for

instance, if your implementation fails to acknowledge packets

under certain circumstances), we recommend reevaluating this

strategy before upgrading to MQTT v5.

How Does MQTT 5 Simplify Authentication?

In the MQTT 3.1.1 protocol, MQTT clients needed to provide

a username when utilizing a password in the CONNECT

packet. This proved inconvenient for some use cases where

a username was unnecessary. One prominent example

includes using OAuth, which leverages a JSON web token for

authentication and authorization information. With MQTT 3.1.1,

static usernames were often utilized given that the critical

information was contained within the password field.

With the advent of MQTT 5, the protocol has introduced more

refined ways to handle tokens, for instance, via the AUTH

packet. However, using the password field of the CONNECT

packet is still feasible. The major improvement here is

that users can simply leverage the password field without

the obligation to fill out the username. This adjustment

offers a more streamlined and straightforward approach to

authentication in specific scenarios.

While the core of the MQTT protocol remains relatively

unchanged, subtle refinements have been implemented under

the surface, laying the groundwork for many new features

MQTT Essentials Ebook

50

https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://www.hivemq.com/blog/mqtt-security-fundamentals-oauth-2-0-mqtt/

in version 5 of this widely adopted IoT protocol. As a user

leveraging MQTT libraries, these modifications may seem

minor and do not radically alter the way MQTT is utilized.

However, for developers working on MQTT libraries and

brokers, these changes, particularly those related to protocol

nuances, are critical and demand attention.

Some shifts in specified behavior, such as message

retransmission, necessitate revisiting deployment design

decisions during the transition to MQTT 5.

Chapter 14: Key Reasons to Upgrade
to MQTT 5 from MQTT 3.1.1

The Internet of Things (IoT) has evolved rapidly over the last

decade, with MQTT emerging as the de facto protocol for the

seamless and efficient communication of IoT devices. As the

scale and complexity of IoT systems grow, the MQTT protocol

is also evolving to meet these demands. In this light, the MQTT

5 upgrade presents significant improvements catering to

modern IoT applications’ expanding needs.

Now, let’s explore why your organization or development team

should consider upgrading to MQTT 5 from MQTT 3.1.1.

Why Upgrade to MQTT 5 from MQTT 3?

MQTT 5 represents a substantial enhancement to the MQTT

protocol, developed with valuable insights from MQTT

users. It incorporates features essential for contemporary

IoT applications, tailor-made for cloud-based deployments.

These advancements promote resilience, dependable error

management for executing crucial messaging, and facilitate

the straightforward integration of MQTT messages into

existing computational frameworks.

In this chapter, we present seven reasons why your

organization or development team should consider upgrading

to MQTT 5; they include:

1.	 Better Error Handling for More Robust Systems

2.	 More Scalability for Cloud Native Computing

3.	 Greater Flexibility and Easier Integration

4.	 The Rise of a Single IoT Standard

5.	 Future-Proofing

6.	 Streamlined Migration

7.	 Improved features, including

	 1. Negative Acknowledgments

	 2.Topic Aliases for Efficiency

	 3. User Properties for Customization

	 4. Payload Format Indicators

Here is the rationale behind how and why MQTT 5 is better

compared to MQTT 3.

1. How MQTT 5 is Better Than MQTT 3 in Error
Handling

MQTT 5 significantly enhances error handling mechanisms,

contributing to the robustness and reliability of the system.

One of the notable introductions is the session and message

expiry feature. This allows developers to set a defined time

limit for each message and session. If a message isn’t

delivered within this time frame, it’s automatically deleted. This

feature is particularly useful in ensuring that network latency

or outages do not lead to delivering outdated or irrelevant

commands to IoT devices.

2. How MQTT 5 is Better Than MQTT 3 in
Offering Greater Scalability

Scalability is a crucial requirement in the modern world of

growing IoT networks. MQTT 5 addresses this by standardizing

shared subscriptions. This allows multiple MQTT client

instances to share the same subscription on the broker. It’s a

powerful feature for load-balancing MQTT clients deployed on

a cloud cluster. This scalability makes MQTT 5 a robust choice

for enterprises with large deployments and those planning to

scale up their IoT systems.

3. How MQTT 5 is Better Than MQTT 3
in Offering Greater Flexibility and Easier
Integration

Taking customization to a new level, MQTT 5 introduces

User Properties, a feature that allows for adding key-

value properties to the headers of MQTT messages. This

capacity means that application-specific information can

be incorporated directly into each message, enhancing the

processing of these messages. For instance, a meta-tag that

includes the unique identifier of the sending client or the

 www.hivemq.com

51



https://www.hivemq.com/blog/mqtt5-essentials-part4-session-and-message-expiry/
https://www.hivemq.com/blog/mqtt5-essentials-part4-session-and-message-expiry/

firmware version of the device platform can be added to the

message header, facilitating analysis and processing by the

receiver.

Additionally, MQTT 5 simplifies the process for the receiver

by incorporating Payload Format Indicators. Now it’s easier to

differentiate between binary or text data, as MQTT 5 includes

a MIME-style content type descriptor. This feature provides

immense value across a plethora of use cases. Consider, for

example, a toll road control system transmitting images of

license plates for image recognition processing. In contrast,

other messages might require a different processing style,

like those including location coordinates. By specifying the

format, MQTT 5 ensures efficient and appropriate processing

of diverse data types.

4. How MQTT 5 is Better Than MQTT 3 as an
IoT Standard

With its rich feature set, MQTT 5 has cemented its place as the

go-to choice for diverse IoT use cases, successfully addressing

the limitations of previous versions. We anticipate exponential

MQTT adoption across industries in the coming years, hinting

at MQTT’s impending status as the universal IoT standard.

5. How MQTT 5 is Better Than MQTT 3 in
Future-Proofing Your Applications

By addressing the limitations of MQTT 3, MQTT 5 paves the

way for future enhancements in IoT applications. Its flexible

and robust features make it adaptable to upcoming technology

trends, ensuring your IoT systems stay current and ready for

future advancements.

6. How MQTT 5 is Compatible With its
Predecessors

One of the practical advantages of MQTT 5 is its compatibility

with its predecessors. It supports MQTT 3.1 and MQTT 3.1.1

features, allowing a mix of MQTT 3 and MQTT 5 clients. This

makes the migration process seamless, enabling organizations

to gradually transition to MQTT 5 without disrupting existing

IoT operations.

7. How is MQTT 5 Better Than MQTT 3 in
Offering Improved Features

In this section, we delve into an array of MQTT5’s enhanced

features. From bolstering system robustness with Negative

Acknowledgments to enabling customization with User

Properties and boosting efficiency with Topic Aliases, MQTT

5 has significantly emphasized usability, flexibility, and

performance. Moreover, Payload Format Indicators have been

introduced to facilitate easy handling of diverse data types.

Let’s explore each of these advancements in detail:

Negative Acknowledgments

In a further bid to bolster system robustness, MQTT 5

incorporates the concept of negative acknowledgments.

The broker can reject specific messages under predefined

conditions or restrictions, such as exceeding the maximum

message size, maximum quality of service (QoS), or using

unsupported features. This proactive measure guards against

MQTT clients that might start sending erroneous or malicious

messages, significantly enhancing the overall system’s

security.

Topic Aliases for Efficiency

In large systems with complex topic structures, topic strings

can become long, increasing network and processing load.

MQTT 5 introduces topic aliases, which lets you replace

these long topic strings with integer values. This can

considerably reduce the demand on the network and the

processing overhead, thereby boosting system efficiency and

performance.

User Properties for Customization

MQTT 5 goes a step further in customization by introducing

User Properties. These allow developers to add key-value

properties to the message header of an MQTT message. This

level of customization enables you to include application-

specific information within each message. This data could

be used to enrich message processing and integration, giving

developers more flexibility and control over their applications.

MQTT Essentials Ebook

52

https://www.hivemq.com/blog/mqtt5-essentials-part5-client-feedback-negative-ack/

Payload Format Indicators

With the diverse types of data in IoT applications, it’s crucial

to have a mechanism that simplifies data handling and

processing. MQTT 5 meets this need with payload format

indicators. These indicators identify whether the payload is

binary or text and include a MIME-style content type. This helps

improve data processing efficiency and makes the system

more adaptable to various data use cases.

Chapter 15: MQTT Session Expiry and
Message Expiry Intervals

In this chapter, we focus on two closely-related features: the

Session Expiry Interval and the Message Expiry Interval.

These functionalities represent key improvements in MQTT 5,

and a thorough understanding of them is crucial for optimal

protocol utilization.

How do Session Expiry Interval and Message
Expiry Interval Work in MQTT 5?

Let’s break down and analyze these two integral expiry interval

features individually.

Session Expiry Interval in MQTT 5

The Session Expiry Interval is a parameter a client sets

during the CONNECT packet stage, specified in seconds. This

parameter indicates the duration the broker retains the client’s

session information. If this interval is set to zero, or if the

CONNECT packet does not specify an expiry value, the session

data is promptly deleted from the broker as soon as the client’s

network connection terminates.

Message Expiry Interval in MQTT 5

Within MQTT 5, clients can set a unique Message Expiry

Interval in seconds for each PUBLISH message. This interval

establishes the duration the broker preserves the PUBLISH

message for subscribers that match the topic but are

currently offline. If the interval isn’t defined, the broker must

indefinitely hold the message for matching subscribers, yet

disconnected subscribers. Furthermore, if the ‘retained=true’

option is selected during the PUBLISH message, the interval

also dictates the length of time a message is retained on a

particular topic.

Notably, the maximum session expiry interval is UINT_

MAX (4,294,967,295), enabling an offline session to

persist for an extended duration of just over 136 years

following client disconnection.

The Session Expiry Interval can be

defined in the connect packet

Publish Packet with Message Expiry Interval set to 120 seconds.

The retainFlag is set to "true", so the message will also be

retained for 120 seconds.

 www.hivemq.com

53



Why Were the Expiry Intervals Introduced in
MQTT 5?

Understanding the functionality of these expiry intervals merely

scratches the surface. It’s also essential to explore the reasons

that prompted incorporating these features into the MQTT 5

specification, along with their practical applications.

In earlier chapters, we captured the spirit of the OASIS

committee’s deliberation process, which culminated in the

establishment of MQTT 5 as a standard in March 2019.

HiveMQ, a proud member of this committee, actively gathered

user feedback, comprehended the needs of long-standing

users of the MQTT 3.1 and 3.1.1 versions, and determined

how best to evolve the protocol. The main driving force was to

introduce features that expanded the realm of possibilities for

users and enhanced the simplicity of their interactions with the

protocol.

MQTT 5’s Session Expiry Interval

The Session Expiry Interval in MQTT 5 masterfully fulfills two

critical needs simultaneously. Earlier versions of MQTT offered

a single avenue for removing persistent sessions as defined by

the specification: a client bearing the same client ID as

the session to be discarded would have to connect with the

cleanSession=true flag set.

Consider scenarios where some IoT devices never reconnect

due to decommissioning, destruction, or leftover sessions

from inadequate cleanups post-load-testing. These residual

sessions could impose an unnecessary burden on a broker’s

persistence. Enterprise-grade MQTT brokers like HiveMQ

come equipped with sophisticated administrative tools such

as the HiveMQ Control Center to facilitate the management of

idle sessions. Nonetheless, it is still crucial to discern which

sessions can be effectively removed.

Enter the session expiry interval feature of MQTT

5. This intuitive feature enables users to specify

a sensible duration, after which the broker

automatically purges an idle session, liberating

valuable resources.

Beyond this automated cleanup capability, the session expiry

interval has significantly simplified session state management.

Ian Craggs graciously provided two diagrams illustrating

the reduction in complexity in state transitions. This visual

representation underscores how this new feature aids in

streamlining state transitions and bolstering user efficiency.

MQTT Essentials Ebook

54

https://www.hivemq.com/blog/mqtt-essentials-part-7-persistent-session-queuing-messages/
https://docs.hivemq.com/hivemq/latest/control-center/administration.html

MQTT 5’s Message Expiry Interval

Much like its counterpart, the session expiry’s interval

inception was fueled by a need for an automated maintenance

mechanism. Consider the myriad of IoT devices, such as

connected cars designed to weather extended periods of

internet disconnection. MQTT offers a lifeline for these

scenarios with persistent sessions and message queueing.

Messages crafted for offline devices are stored on the broker,

waiting for the device to regain connectivity for delivery.

In grand-scale deployments, where the count of connected

devices escalates into thousands or even millions, it’s

imperative to constrain the offline message queue for each

client individually.

The longevity of message relevance to IoT devices can exhibit

significant fluctuations. Take the example of the connected

car: traffic updates maintain their relevance only briefly. Yet,

when we consider over-the-air firmware upgrades, these need

to be executed even if the car remains offline for an extended

period, stretching into several weeks.

The Message Expiry Interval in MQTT 5 emerges

as the perfect tool to manage these differing

time frames, adding to the protocol’s versatility.

De-cluttering of state transition in MQTT 3.1.1 and MQTT 5 (courtesy of Ian Craggs)

 www.hivemq.com

55



By assigning an optimal message expiry interval to messages

with a limited relevance window and leaving perpetual

relevance messages without an expiry, we ensure effective

utilization of broker resources for clients that could be

offline for a considerable duration. This strategy also spares

clients from being inundated with irrelevant messages upon

reconnection.

For retained messages, the message expiry

interval operates similarly, guaranteeing that

these messages are only dispatched to new

subscribers for a specified period.

One crucial aspect to note, however, is that when a client’s

session expires, all queued messages for that client also

expire in sync with the session, irrespective of their individual

message expiry status. This “GOTCHA” is an important

reminder of the interconnectedness of sessions and their

queued messages in the MQTT protocol.

Important Tips for MQTT 5 Session Expiry
Interval and the Message Expiry Interval

Here’re some important information:

•	 Both the Session Expiry Interval and the Message Expiry

Interval are instrumental in refining resource management

on the MQTT broker.

•	 Reflecting on the past, many MQTT 3 users expressed

a need for expiry features. HiveMQ responded to this

demand by introducing session and message expiry as

supplementary features in our MQTT platform, predating

their standardization in MQTT 5.

•	 The equivalent for cleanSession=true in the CONNECT

packet of MQTT 3 is sessionExpiry=0 (or absent) and

cleanStart=true in MQTT 5.

•	 Likewise, cleanSession=false from the MQTT 3 CONNECT

packet finds its counterpart in MQTT 5 as a sessionExpire

value exceeding zero, coupled with cleanStart=false.

•	 MQTT brokers, such as HiveMQ, offer the capability to

configure a maximum value for these expiry intervals

on the server side. This feature is handy in multi-vendor

projects, particularly when the broker operator may lack

authority over the MQTT client settings.

Example: traffic jam alerts usually become obsolete after 1-2 hours, but a firmware update should be available for many weeks.

Message Expiry Interval is the perfect feature to define these different periods of time.

MQTT Essentials Ebook

56

https://www.hivemq.com/blog/mqtt-essentials-part-8-retained-messages/
https://docs.hivemq.com/hivemq/latest/user-guide/configuration.html#session-msg

The advent of MQTT 5 has ushered in a host of new features

designed to enhance the protocol’s usability, flexibility, and

efficiency. The Session Expiry Interval and the Message Expiry

Interval are prime examples of this, acting as invaluable tools

in resource management and ensuring the smooth functioning

of your MQTT broker. Both these features truly embody the

user-centric evolution of the MQTT standard, demonstrating its

responsiveness to the demands and challenges of its users.

Chapter 16: MQTT 5’s Improved Client
Feedback & Negative ACKs

In this chapter, we focus on MQTT 5’s Enhanced Client

Feedback and Negative ACKs(NACKs). We will dissect

this method that MQTT 5 implements for MQTT brokers to

acknowledge clients, examining their potential to simplify the

work of developers and operations teams, and making the

protocol more robust and efficient.

Who Needs More Client Feedback While Using
MQTT?

Over the years, MQTT has become a staple in numerous IoT

projects. As noted in this eBook earlier, the OASIS committee

thoroughly considered the feedback from actual protocol users

while crafting the new MQTT 5 protocol standard. Among the

predominant grievances was a glaring lack of transparency,

primarily due to the insufficient return codes and limited means

to communicate specific limitations or circumstances from

the broker to the client. This deficiency resulted in increased

debugging complexity, particularly in multi-vendor projects.

Whether it’s delving into the causes of client disconnects,

examining why messages fail to reach their designated targets,

or guaranteeing consistency in MQTT client deployments

across various teams, MQTT 3 users often find the need to

augment the basic protocol features with technology, such

as the HiveMQ Extension SDK. MQTT 5 has been deliberately

designed to address these challenges more efficiently and in a

standardized manner by introducing the following features.

MQTT 5’s Specific Feature Set

Let’s focus on several MQTT 5 features that provide more

transparency and allow centralized system control by virtue of

the broker.

Feedback on Connection Establishment in
MQTT 5

With MQTT version 5, it is now possible for MQTT brokers

to give additional feedback to MQTT clients on connection

establishment. A number of different properties can be added

to the connection acknowledgment packet that tells the client

which features the broker supports or the client is allowed to

use. This includes the following MQTT features:

•	 Retained messages

•	 Wildcard subscriptions

•	 Subscription identifiers

•	 Shared subscriptions

•	 Topic aliases

•	 Maximum quality of service level the client can use

In addition to notifying the client about enabled and disabled

features, the new properties in the CONNACK packet also allow

the server to give the client feedback on the limits granted to it

by the broker. These limits include:

•	 Keep Alive

•	 Session expiry interval

•	 Maximum packet size

•	 Maximum number of topic aliases the client can send

Beyond supporting all of these limits, HiveMQ allows you

to configure a maximum for the limits and to disable MQTT

features that are not needed in your use case.

Better Reason Codes in MQTT 5

In previous iterations, namely MQTT version 3.1 and 3.1.1, the

assortment of available reason codes was somewhat limited,

with only five codes pertaining to unsuccessful operations.

However, MQTT 5 substantially enhances this aspect, offering

an expanded set of over 20 reason codes dedicated to

unsuccessful scenarios.

Moreover, MQTT 5 introduces the possibility of integrating

reason codes into packets that previously lacked this attribute

 www.hivemq.com

57



https://github.com/hivemq/hivemq-extension-sdk

in versions 3.1 and 3.1.1. These packets include UNSUBACK,

PUBACK, PUBREC, PUBREL, DISCONNECT, and PUBCOMP. This

enhancement further strengthens the protocol’s transparency

and troubleshooting efficiency, illustrating the forward strides

made in MQTT 5.

Enhancing Clarity with Contextual Reason
Strings in MQTT 5

While adding additional reason codes certainly bolsters the

feedback quality to clients, these codes often fall short in

providing specific contexts. This is where MQTT 5 introduces

the concept of ‘reason strings’ to bridge the gap, described in

the specifications as, “… a human readable string designed for

diagnostics …"

Reason strings offer a comprehensive context that developers

and operation teams need to swiftly pinpoint the cause of an

event. In essence, a reason string is a human-readable string

meticulously designed for diagnostic purposes. This valuable

tool aids in understanding the nuances of events in a way that

reason codes alone can’t provide.

However, it’s worth noting that reason strings, despite their

usefulness in development and diagnostics, can be deactivated

within HiveMQ’s configuration. This flexibility caters to

scenarios where the exposure of such detailed information

might not be preferred.

Server-Sent Disconnect Packets in MQTT 5

In MQTT 3.1 and 3.1.1, when a client surpasses a broker-

defined limit, the broker responds by abruptly closing the

client’s connection. However, this action doesn’t provide

any direct insight to the client regarding the reason for the

connection termination, which can lead to confusion and

troubleshooting difficulties.

In contrast, MQTT 5 significantly improves this process by

introducing server-sent disconnect packets. These allow the

broker to deliver a DISCONNECT packet to the client before

terminating the connection. Each server-sent disconnect

packet includes a reason code and a corresponding reason

string. These two elements work together to give the client

a comprehensive understanding of why the connection was

severed.

This streamlined method of connection termination not only

adds clarity for the client but also substantially simplifies

pinpointing the reason behind a broker-initiated connection

closure. This significant enhancement in MQTT 5 dramatically

improves the communication transparency between broker and

client.

What are Negative Acknowledgments in
MQTT 5

In MQTT 5, the communication mechanisms have been greatly

improved with the addition of negative acknowledgments.

Multiple packet types and message flows can now respond

with a negative acknowledgment message, enhancing the

messaging infrastructure’s overall feedback loop.

Contrasting with MQTT 3, where the UNSUBACK packet sent

to the client lacked a payload, leaving the client uninformed

in case of an unsuccessful UNSUBSCRIBE attempt, MQTT

5 fundamentally changes this. The UNSUBACK packet in

MQTT 5 includes a reason code informing the client about its

UNSUBSCRIBE attempt’s status, providing clear and actionable

feedback. Several potential failure reasons are enumerated,

such as the nonexistence of the initial subscription or a lack of

client authorization to unsubscribe.

Acknowledgement packets from the publish flow, specifically

PUBACK, PUBREL, PUBREC, and PUBCOMP, have also been

enhanced with the ability to send a negative acknowledgment

message. This ability is crucial when the server cannot process

a message sent by the client, for example, due to the client

not having the required authorization to publish on a certain

topic. The enhanced ack packet now equips the client with all

the necessary information to adapt and rectify the situation,

reducing the need to contact operations or support teams to

understand the issue. This marks a significant leap forward in

maintaining efficient and smooth communication within MQTT

5 applications.

MQTT Essentials Ebook

58

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901194

MQTT 5: Refining MQTT Communication

•	 MQTT brokers such as HiveMQ let you set a server side

max value configuration for the mentioned limits. This

is extremely useful in multi-vendor projects in which the

operator of the broker may not have control over the

settings of the MQTT clients.

•	 The improved feedback for clients significantly simplifies

diagnosis for development and operations.

•	 The added transparency also improves the interoperability

between different MQTT clients and brokers.

Notably, the advancements in feedback for clients

substantially streamline the diagnostic process for both

development and operations teams. This enhanced feedback

mechanism resolves issues faster and prevents potential

bottlenecks in your MQTT systems.

Moreover, the transparency introduced with these

improvements fosters better interoperability between different

MQTT clients and brokers. This attribute is fundamental in

creating robust and versatile IoT ecosystems, and it further

emphasizes the strides MQTT 5 has made toward enhancing

communication, debugging, and overall system control.

Chapter 17: MQTT User Properties

In this chapter, we guide you through another groundbreaking

feature: User Properties. This addition is poised to

revolutionize how you interact with MQTT, creating a more

customized and insightful user experience.

Let’s dive in.

MQTT 5 has been meticulously crafted to bridge the existing

chasm between the offerings of MQTT 3.1.1 and the evolving

expectations of users from this de facto standard protocol for

the Internet of Things. With MQTT 5, we’re ensuring that MQTT

continues to lead the pack as the IoT protocol par excellence

for many more decades.

How User Properties in MQTT 5 Work?

In MQTT 5, User Properties fundamentally operate as

straightforward UTF-8 string key-value pairs. Their utility lies

in their ability to be affixed to nearly every category of MQTT

packet, with the sole exceptions of PINGREQ and PINGRESP.

This broad application extends to various control packets like

PUBREL and PUBCOMP.

The power of User Properties is in their uncapped potential

- as long as the maximum message size isn’t exceeded, you

are free to employ an infinite number of User Properties. This

opens up vast possibilities for enriching MQTT messages

Exceeding the maxPacketSize is one of the new reason codes for negative acknowledgments.

In essence, User Properties are the user-defined

properties that help you add metadata to MQTT

messages and help transmit additional user-defined

information.

 www.hivemq.com

59



https://docs.hivemq.com/hivemq/latest/user-guide/configuration.html#mqtt-config
https://docs.hivemq.com/hivemq/latest/user-guide/configuration.html#mqtt-config
https://www.hivemq.com/blog/mqtt5-essentials-part3-upgrade-to-mqtt5-now/

with additional metadata, facilitating a fluid transmission of

information between the publisher, broker, and subscriber.

Conceptually, this feature closely mirrors the

role of headers in HTTP. It’s this resemblance

that allows User Properties to inject a level of

customizable complexity into MQTT 5, helping

to create a protocol that is not only more robust

but also more adaptable to user needs.

Why Were User Properties Introduced in
MQTT 5?

MQTT 3 users identified two significant limitations: the

protocol’s constrained extensibility and the complexity of

creating multi-vendor deployments. To rectify these concerns,

MQTT 5 introduced the User Properties feature, effectively

mitigating these challenges.

User Properties provide an avenue for enhancing flexibility by

enabling users to transport virtually any piece of information

across the entire MQTT system. This capability ensures

that the MQTT protocol no longer restricts but promotes

customized enhancements. This leap forward in functionality

paves the way for users to augment standard protocol

features, tailoring them to meet their specific requirements.

In doing so, MQTT 5 ensures that the protocol evolves in step

with its users, facilitating greater adaptability and easing the

integration of multi-vendor deployments.

Practical Use Case Examples of MQTT 5 User
Properties

While the intricacies of the User Properties feature might

initially seem minor, the practical implications of possessing

a mechanism to transfer metadata across the complete

MQTT ecosystem are indeed substantial. To illustrate this

transformative potential, let’s delve into three common

use cases that underscore the need for a feature like User

Properties—a need articulated repeatedly by users eagerly

awaiting the introduction of this component in the MQTT

specification.

Saving Resources with Payload Metadata Using User
Properties in MQTT 5

In environments where MQTT serves as a connector between

diverse systems developed by different teams or vendors,

variability in payload structures is quite commonplace. Clients

may transmit data in many formats, including JSON, XML, or

compressed formats such as Protobuf.

The advent of User Properties in MQTT 5 opens the door to

appending metadata to messages, encapsulating specific

details such as the markup language and version employed

to encode the payload. This metadata provision obviates the

need for the receiving client, or in certain instances, the broker,

to unpack the payload and cycle through an array of possible

parsers until the appropriate one is located.

Instead of this cumbersome process, each message

arrives equipped with its parsing information, streamlining

interpretation and significantly reducing the computational

load across the entire system. This efficient use of resources

amplifies the overall performance and speed of the MQTT

network, showcasing the transformative power of User

Properties.

Including metadata about the used markup language in the payload can significantly relieve the system.

MQTT Essentials Ebook

60

Increased Efficiency Through Application Level Routing Using User Properties in MQTT 5

With its proficiency in data transportation and routing, MQTT frequently serves as the backbone for large-scale data processing and

streaming deployments. Such deployments typically involve a multitude of devices, systems, and applications. It’s quite common for

different systems to receive identical messages but for distinct purposes. For instance, one system may display live data while other

archives the same data for long-term storage.

In such scenarios, User Properties can prove invaluable by serving as an additional application-level timestamp for the message.

This attribute lets the broker quickly ascertain whether certain messages should not be passed to a specific subset of subscribers

based on a predefined validity period. This feature introduces an added application-level layer that further refines message relevance

according to the Message Expiry Interval.

Therefore, User Properties in MQTT 5 not only bolster the system’s efficiency but also provide a finer level of control, thereby

maximizing the utility and relevancy of each transmitted message.

Transparent Traceability in Complex Systems Using User Properties in MQTT 5

The landscape of IoT deployments often presents a maze of intricacy, with individual systems operating in parallel. Such complexity

can cloud the origin of a specific message or the factors contributing to an unsuccessful multi-layer message flow. Under the MQTT

3.1.1 framework, there was no mechanism for a subscriber to discern the identity of a message’s publisher. Although embedding

a unique identifier in the topic is a viable strategy in 1-to-1 scenarios, this approach undermines several pivotal advantages of the

publish-subscribe model.

In this regard, the advent of the User Property feature in MQTT 5 heralds a significant transformation. This innovative addition

enables publishers to effortlessly include relevant self-identifying information, such as a client ID or the region where the publishing

is conducted. Importantly, this information is relayed to all message recipients without necessitating any supplemental business

logic.

Incorporating information about the publisher’s region enhances the system’s traceability while attaching a unique system identifier

to MQTT messages enables comprehensive logging and tracking of the entire message flow from the sender to all subscribers.

Implemented effectively, these identifiers can extend across multiple MQTT message flows, introducing unprecedented transparency

and traceability.

Example: user properties provide information for the broker, if messages should be routed to a storage or a display application.

 www.hivemq.com

61



https://www.hivemq.com/blog/mqtt5-essentials-part4-session-and-message-expiry/

Such capabilities unlock a new horizon of possibilities,

particularly for business-critical applications like premium

paid services for end customers, where transparency and

traceability become indispensable.

Additional Information on User Properties in
MQTT 5

•	 User properties serve as UTF-8 string key-value pairs that

can seamlessly be incorporated into any MQTT message.

This ability positions them as a versatile and invaluable

addition to the MQTT protocol.

•	 The implementation potential of User Properties in

enhancing MQTT use cases is practically boundless. It

offers a degree of customization that allows for many

innovative applications, both in function and scope.

•	 Deployments and projects that extend over multiple

systems and vendors can leverage this feature

to maintain consistency and ensure seamless

communication across the entire infrastructure.

•	 We are exhilarated to see the myriad of inventive ways

MQTT users will harness the potential of this deceptively

simple yet impactful feature.

User Properties in MQTT 5 represent a significant step forward

in protocol extensibility and versatility, opening up exciting

possibilities for future IoT applications.

Chapter 18: MQTT Shared
Subscriptions

In this chapter, we’ll delve into an especially interesting feature:

Shared Subscriptions.

Shared subscriptions, a core feature of MQTT

5, enable multiple MQTT clients to share a

single subscription on the broker. In essence,

this feature allows messages on a topic to be

distributed among multiple clients, thereby

improving load balancing and fault tolerance in

an MQTT system.

Shared subscriptions: Bridging the MQTT Gap
with V5

MQTT 5 was ingeniously designed to connect the gap

between the functionality offered by MQTT 3.1.1 and users’

Adding information about the publisher’s region adds traceability to the system.

MQTT Essentials Ebook

62

expectations for the Internet of Things’ de facto standard

protocol. With the integration of sought-after features such

as Shared Subscriptions and Session and Message Expiry

Intervals, MQTT 5 is poised to consolidate MQTT’s standing as

the go-to IoT protocol for the foreseeable future.

Due to the high demand for shared subscriptions, HiveMQ

introduced this feature before the MQTT 5 specification was

released. As a result, all MQTT brokers striving for 100%

compatibility with the MQTT 5 specification must support this

feature.

How MQTT Shared Subscriptions Work

In a standard MQTT subscription, each subscribing client is

privy to a copy of each message broadcasted to that topic.

With shared subscriptions, clients sharing a subscription

in the same group receive messages in rotation, a process

sometimes referred to as client load balancing. The message

load of a single topic is distributed across all subscribers.

MQTT clients can subscribe to a shared subscription using

standard MQTT mechanisms. Any standard MQTT clients,

such as Eclipse Paho, can participate without requiring

any modifications on the client side. It’s important to note

that shared subscriptions employ a unique topic syntax for

subscribing.

Shared subscriptions use the following topic structure:

$share/GROUPID/TOPIC

The shared subscription consists of 3 parts:

•	 A static shared subscription identifier ($share)

•	 A group identifier

•	 The actual topic subscriptions (may include wildcards)

A concrete example for such a subscriber would be:

$share/my-shared-subscriber-group/myhome/groundfloor/+/

temperature

How Do MQTT Shared Subscriptions Work in
HiveMQ MQTT Broker?

A shared subscription group can be conceptually envisaged

as a virtual client acting as a proxy for numerous subscribers

simultaneously. HiveMQ selects one subscriber from the group

and delivers the message to that client. It typically uses a

round-robin approach for distribution. The following picture

demonstrates the principle:

Shared Subscriptions

 www.hivemq.com

63



https://www.hivemq.com/blog/mqtt5-essentials-part4-session-and-message-expiry/
https://www.hivemq.com/blog/mqtt5-essentials-part4-session-and-message-expiry/
https://www.hivemq.com/mqtt/mqtt-client-library-encyclopedia/
https://www.hivemq.com/mqtt/mqtt-client-library-encyclopedia/
https://www.hivemq.com/blog/mqtt-client-library-encyclopedia-eclipse-paho-java/

For instance, a HiveMQ deployment might feature multiple

shared subscription groups. These groups can have the

same subscription but different group identifiers. Whenever a

publisher sends a message with a matching topic, one unique

client from each group receives the message. For example, the

following scenario is possible:

In the given scenario, we have two distinct groups, each

encompassing two subscribing clients within their shared

subscription group. Although these groups subscribe to

the same topics, they are differentiated by unique group

identifiers. When a publisher issues a message that aligns with

a particular topic, a solitary client from each group — and only

one client — is selected to receive the message.

MQTT Shared Subscription Use Cases

Shared subscriptions have a multitude of applications,

particularly in high-scalability scenarios. These include:

•	 Client load balancing for MQTT clients that cannot handle

the load on subscribed topics.

•	 Worker (backend) applications that ingest MQTT streams

must scale horizontally.

•	 Optimizing subscriber node-locality for incoming

publishes to reduce HiveMQ intra-cluster node traffic.

•	 The delivery semantics employ QoS 1 and 2 though there’s

no necessity for guarantees on ordered-topic.

•	 Addressing hot topics causing scalability bottlenecks due

to higher message rates.

How to Subscribe with Shared Subscriptions
in MQTT?

Engaging your clients with shared subscriptions is a

straightforward process. Below, we illustrate how to

accomplish this using the MQTT CLI. The given command line

execution code allows two MQTT clients to subscribe to the

same subscription group and topic:

With these commands executed, both MQTT clients now have

a shared subscription to the ‘my-share-topic’ (part of

the virtual group ‘group1’). In this configuration, each client

is allocated half of the MQTT messages dispatched over the

MQTT broker on the topic ‘my-share-topic’.

Remember, the MQTT clients can join or depart from the

subscription group whenever they prefer. For instance, should

a third client decide to join the group, the distribution of

relevant MQTT messages becomes equally divided among all

three clients, each receiving one-third of the total.

For a deeper understanding of the semantics of shared

subscriptions, the official HiveMQ Documentation is an

excellent resource.

Scaling MQTT Subscribers with Shared
Subscriptions

Shared subscriptions provide a simple way to integrate

backend systems with MQTT, especially when it is not feasible

to use HiveMQ’s extension system or dynamic scaling is

necessary. With the shared subscriptions, you can quickly add

subscribers as needed, distributing work in a push fashion.

Shared Subscriptions multiple groups

MQTT Essentials Ebook

64

mqtt sub -h broker.hivemq.com -t

'$share/group1/my-share-topic' -i

client1 -q 1

mqtt sub -h broker.hivemq.com -t

'$share/group1/my-share-topic' -i

client2 -q 1

https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://docs.hivemq.com/hivemq/latest/user-guide/shared-subscriptions.html#hivemqdocs_shared_subscriptions
https://www.hivemq.com/products/extensions/

Shared subscriptions prove immensely valuable for scaling and

load-balancing MQTT clients. Furthermore, HiveMQ clusters

offer additional benefits in terms of latency and scalability

through internal optimization of message routing.

For comprehensive details on shared subscriptions

and HiveMQ clusters, reference the official HiveMQ

Documentation.

In summary, shared subscriptions provide a compelling way

to distribute messages across various MQTT subscribers

using standard MQTT mechanisms. This feature simplifies

implementing MQTT-client load balancing without the need

for any proprietary modifications to your MQTT clients. This is

especially beneficial for backend systems or “hot-topics” that

might quickly overwhelm a single MQTT client.

Chapter 19: MQTT Payload Format
Description and Content Type

In this chapter, we will focus on Payload Format Indicators,

which specify the message content type, ensuring easier, more

efficient parsing and interoperability between systems.

What is Payload Format Indicator in MQTT?

The Payload Format Indicator is a fundamental component

of any MQTT packet that houses a payload. This includes a

CONNECT packet encapsulating a WILL message or a PUBLISH

packet. This optional byte value has two possible settings: a 0

indicates an “unspecified byte stream” while a 1 represents a

“UTF-8 encoded payload.” When the Payload Format Indicator

isn’t provided, it automatically defaults to 0.

MQTT Content Type

Similar to the Payload Format Indicator, the Content Type

is also optional and can be incorporated in a CONNECT

containing a WILL message or any PUBLISH packet. The value

for the Content Type must be a UTF-8 encoded string that

identifies the payload’s nature. When the Payload Format

Indicator is set to 1, ideally, you should have a MIME content

type descriptor (though it’s not a hard requirement). A valid

UTF-8 String is all you need.

or 1

The Payload Format Description is optional. It can have the

values "1" or "0".

For UTF-8

encoded

strings

Content

Types can be

defined.

Why Describe the Payload Format?

The combined use of Payload Format Indicator

and Content Type facilitates a transparent

description of the payload content for any

application message. This ability sets the stage

for creating and defining industry-wide MQTT

standards for varied payload formats. MQTT

protocol experts view this standardization as the

protocol’s natural progression.

Payload Format Description allows pre-parsing without the need to open the payload

 www.hivemq.com

65



https://docs.hivemq.com/hivemq/latest/user-guide/shared-subscriptions.html#use-cases
https://docs.hivemq.com/hivemq/latest/user-guide/shared-subscriptions.html#use-cases

Having the payload content description in the headers can

prove incredibly beneficial in individual deployments. It ensures

every message is correctly processed without delving into

the payload itself. Depending on the content type, different

messages within a system may need various parsing methods.

Moreover, in certain instances, message persistence could

hinge on the payload’s specific type. As the content-type

definitions hinge on user design, the potential applications of

this feature appear boundless.

In summary, the Payload Format Indicator discerns whether

a payload is an undefined byte array or a UTF-8 encoded

message. When dealing with UTF-8 encoded messages, the

sender can use the content type to specify the payload’s

nature.

These features set the stage for transparent payload content

definitions across large-scale systems and, potentially, entire

industries. As the need for pre-parsing actual payloads

diminishes, proper message processing can considerably

enhance scalability.

Although it’s anticipated that most users will rely on known

MIME types to describe the content, they can also use arbitrary

UTF-8 Strings.

Chapter 20: MQTT Request-Response
Pattern

In this chapter, we spotlight two standout elements: Response

Topic and Correlation Data.

Navigating the complexities of modern IoT projects demands

teamwork across diverse vendors and teams. As MQTT

has become the protocol par excellence for IoT, enhanced

interoperability and system transparency emerged as prime

requirements in the MQTT version 5 blueprint. The features

we’re delving into today answer these user needs by providing

a standard solution for implementing a request-response

pattern with MQTT.

What is Request-Response Pattern in MQTT?

MQTT is rooted in asynchronous messaging, adopting the

publish-subscribe paradigm. This design allows senders and

receivers to function independently of one another, facilitating

one-to-many relationships. It’s vital to grasp that MQTT’s

request-response pattern tackles challenges differently from

synchronous, one-to-one-based protocols like HTTP.

In MQTT, a response typically doesn’t directly

answer a request’s “question”. Instead, the

request triggers a specific action in the receiver,

and the response communicates the result of

this action.

Sounds complicated? Don’t fret; a concrete example will soon

bring this into perspective!

What is Response Topic in MQTT 5?

A response topic is an optional UTF-8 string incorporated

into any PUBLISH or CONNECT packet. If a value is present

in the response topic, the sender immediately classifies the

associated PUBLISH as a request. The response topic field

indicates the topics where the message receivers’ responses

are expected. The initial PUBLISH (request) and the response

topic can have multiple or no subscribers. Ideally, the original

PUBLISH (request) sender should subscribe to the response

topic before dispatching the request.

What is Correlation Data in MQTT 5?

Correlation data is optional binary data that trails the

response topic. It helps the request’s sender identify which

specific request a later received response relates to. The

correlation data allows the original request sender to manage

asynchronous responses potentially sent from multiple

receivers. It’s important to note that this data is not relevant

to the MQTT broker but serves to identify the relationship

between sender and receiver.

What is Response Information in MQTT 5?

To foster transparent implementation and improved

standardization, the MQTT 5 specification introduced the

MQTT Essentials Ebook

66

https://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe/

Response Information property. Through a boolean field in the CONNECT, a client can request response information from the

broker. When set to true, the broker can dispatch an optional UTF-8 String field (response information) in the CONNACK packet to

communicate anticipated response topics.

This feature allows users to globally define a specific part of your topic tree on the broker, accessible by all clients indicating their

intention to use the request-response pattern at the connection establishment.

End-to-End Acknowledgment in MQTT 5

MQTT ensures the complete decoupling of message senders and receivers. Use cases often call for an acknowledgment of message

receipt from the intended recipient. For example, when opening the door of your smart home via a command, the sender (typically a

mobile app) would want to know when and if the message was received and the outcome of the command.

The inclusion of the request-response pattern in the MQTT

5 specification was largely driven by the need for these

“business ACKs.” MQTT users sought the capability to

provide end-to-end acknowledgments between an application

message’s sender and receiver. Adding response topics,

correlation data, and response information as protocol fields

significantly bolsters extensibility, dynamism, and transparency

in application development using the request-response pattern.

MQTT 3 users previously embraced this pattern. By integrating

response topics, correlation data, and response information

directly into protocol fields, we’ve significantly enhanced

application development’s versatility, dynamism, and

transparency under the request-response pattern.

Source Code Example of MQTT Request-
Response Workflow

Below is a quick code snippet showcasing the HiveMQ MQTT

Client’s capabilities, providing a taste of the request-response

pattern workflow in MQTT. Note that it’s not a complete,

functioning excerpt.

You can access a full example on GitHub.

Example: Smart door opening with a mobile device using the MQTT 5 Request Response feature.

 www.hivemq.com

67



https://github.com/hivemq/hivemq-mqtt-client/blob/master/examples/src/main/java/com/hivemq/client/mqtt/examples/RequestResponse.java

//Requester subscribes to response topic

Mqtt5SubAck subAck = requester.subscribeWith()

 .topicFilter("job/client1234/result")

 .send();

//Requester publishes request

Mqtt5PublishResult result = requester.publishWith()

 .topic("job")

 .correlationData("1234".getBytes())

 .responseTopic("job/client1234/result")

 .payload(message.getBytes())

 .send();

//Responder subscribes to request topic

Mqtt5SubAck subAck = responder.subscribeWith()

 .topicFilter("job")

 .send();

//Responder sends response after receiving the request

 Mqtt5PublishResult result = responder.publishWith()

 .topic(publish.getResponseTopic().get())

 .payload(msg.getBytes())

 .correlationData(publish.getCorrelationData().get())

 .send();

Key Takeaways from Request-Response in MQTT

Here are a few key takeaways of request-response in MQTT:

•	 The request-response pattern in MQTT significantly differs from its counterpart in

synchronous, client-server-based protocols like HTTP.

•	 MQTT allows multiple, single, or even no subscribers for requests and responses.

•	 Correlation data ensures the proper linking between request and response, enhancing

message tracking.

•	 This pattern facilitates the implementation of “business acknowledgment”

functionality, providing an extensible, dynamic, and transparent solution.

MQTT Essentials Ebook

68

Best Practices to Consider While Using
Request-Response in MQTT

Here are a few best practices to consider while using request-

response in MQTT:

•	 Ensure the requester subscribes to the relevant response

topic before sending a request.

•	 Employ unique identifiers within the response topic to

avoid confusion.

•	 Ascertain that responders and requesters possess the

necessary permissions to publish and subscribe to

response topics.

•	 Dedicate a specific section of the topic tree for response

purposes, and utilize the response information field to

relay it to clients.

As we journey through the transformative features of MQTT

v5, we discover the power of protocol evolution. These

enhancements, like the request-response pattern, not only

streamline existing practices but also unlock new realms of

dynamic, transparent, and extensible application development.

Chapter 21: MQTT Topic Alias

In the previous chapter, we unraveled the Request - Response

Pattern. In this chapter, we now direct our attention to another

potentially impactful feature: Topic Alias.

What is MQTT Topic Alias?

Topic Aliases are integer values substituting topic

names. It enables you to condense a lengthy and

frequently utilized topic name into a 2-byte integer.

This helps minimize the amount of bandwidth

consumed during message publication.

Senders define the Topic Alias value in the PUBLISH

message, followed by the topic name. Receivers

then process this message like any other PUBLISH,

establishing a mapping between the Topic Alias

(integer) and Topic Name (string). Subsequent

PUBLISH messages for the same topic can be sent

with just the Topic Alias, omitting the topic name.

Why Use Topic Aliases in MQTT?

MQTT plays a pivotal role in your network with its efficiency

in maintaining standing connections between your devices

and the brokers. The Keep Alive mechanism guarantees the

longevity of connections between clients and the broker,

swiftly detecting any connection loss that could occur in

unstable networks. PING packets - of just two bytes - need

to be sent only every few minutes, enabling MQTT to sustain

these connections with minimal power and bandwidth use.

This brings us to the Topic Alias feature, which is particularly

beneficial in deployments involving a vast array of connected

devices transmitting smaller, frequent messages. So, let’s dive

into this feature and see how it can optimize your MQTT 5

utilization.

How to Use MQTT Topic Names?

The MQTT client and the broker have the power to establish a

Topic Alias for any PUBLISH message, provided they are the

message’s originator. Similarly, they can control the number

of Topic Aliases permitted for each connection. The upper

limit for Topic Aliases, known as the Topic Alias Maximum, is

determined during the connection establishment phase.

The client indicates its Topic Alias Maximum in the CONNECT

packet, while the broker does so in the CONNACK packet.

Therefore, the client should only utilize Topic Alias values

ranging from 1 to the broker-defined Topic Alias Maximum

presented in the CONNACK packet. Similarly, the broker should

respect the range of 1 to the client-defined maximum from the

CONNECT packet.

In the absence of a specified Topic Alias Maximum, a default

value of 0 is assumed, which effectively disables the use of

Topic Aliases. This ensures clear communication boundaries

and precise control of Topic Aliases within your MQTT

deployment.

Use Case Examples of MQTT Topic Alias

MQTT stands out as a lightweight communication protocol

that efficiently maintains TCP connections between clients

 www.hivemq.com

69



https://www.hivemq.com/blog/mqtt5-essentials-part9-request-response-pattern/
https://www.hivemq.com/blog/mqtt5-essentials-part9-request-response-pattern/
https://www.hivemq.com/blog/mqtt-essentials-part-10-alive-client-take-over/

and brokers. Its Keep Alive mechanism minimizes energy and

bandwidth usage, enabling users to establish cost-effective,

always-connected device deployments. Moreover, it allows for

real-time delivery of minimal data points, like measurements,

negating the need for periodic bulk data transfers – a

requirement of heavier data transfer technologies.

This inherent efficiency of MQTT finds utility in numerous

applications, such as predictive maintenance, where the

service’s quality and responsiveness can be enhanced by

transmitting small data points in real time. In these situations,

an elaborate topic name might be more sizable than the

actual data payload, which a single integer could represent.

For instance, a topic name like 'data/europe/germany/

south/bavaria/munich/schwabing/box-32543y/

junction/consumption/current' describes the current

power consumption of a specific junction box, with the payload

being a single integer value.

The Topic Alias feature of MQTT comes to the fore in these

instances, replacing lengthy and complicated topic strings

with single integers. This technique is especially useful

when sending numerous small messages over extensive

topic names in real time, offering two primary advantages: It

amplifies performance while significantly reducing network

traffic. Hence, Topic Alias becomes a powerful tool in your

MQTT 5 arsenal, optimizing data transmission and network

management.

In summary, Topic Alias offers a versatile approach to utilizing

the pub/sub model. When repeatedly publishing messages to

a limited number of topics, particularly in high volumes, Topic

Aliases can significantly conserve network and computing

resources in an efficient manner.

Chapter 22: Enhanced Authentication
in MQTT

Modern IoT projects have evolved into large, complex projects,

especially when robust security measures are paramount.

These expansive initiatives often involve collaboration between

multiple vendors and teams. Adhering to internationally

accepted standards becomes crucial to streamline the

challenges encountered in such projects. Enhanced

Authentication helps ensure compliance with these standards.

Implementing Challenge-Response
Authentication

By incorporating challenge-response authentication into your

MQTT 5 implementation, you can access industry-standard

authentication mechanisms like the Salted Challenge

Topic Alias can substitute long and complex topic strings with

single integers.

Understanding MQTT Topic Alias

•	 Topic Aliases substitute UTF-8 String topic

names with an integer.

•	 Topic Alias to Topic mapping is relevant only for

a single connection.

•	 This feature’s support is optional for brokers

and clients.

•	 Broker and client negotiate to what degree this

feature is supported during the connection

establishment.

•	 Ensure your broker and client implementation

supports Topic Aliases if you wish to use this

feature.

•	 When used correctly, Topic Aliases can

significantly impact the profit margins of your

business case.

MQTT Essentials Ebook

70

https://www.hivemq.com/blog/mqtt-essentials-part-10-alive-client-take-over/

Response Authentication Mechanism (SCRAM) or the Kerberos protocol. These widely recognized protocols further bolster the

security of your IoT infrastructure by adding a layer of verification.

What is Authentication Flow in MQTT?

The authentication flow in enhanced authentication relies on three MQTT message types: CONNECT, CONNACK (already present in

MQTT v3), and the new MQTT v5 AUTH message. Clients send CONNECT messages, while the server sends CONNACK messages.

Both message types are used once during each authentication process. On the other hand, AUTH messages can be used multiple

times by both the server and the client.

The core of the authentication flow revolves around two message properties: the Authentication Method (identified by byte 21) and

the Authentication Data (identified by byte 22). These properties are set on every message involved in the enhanced authentication

flow.

Authentication Method in MQTT

With the Authentication Method the client and server can

select and describe the agreed-upon authentication approach.

It is represented by method strings commonly used to identify

SASL (Simple Authentication and Security Layer) mechanisms.

For instance, examples of method strings include SCRAM-

SHA-1 for SCRAM with SHA-1 or GS2-KRB5 for Kerberos.

The Authentication Method assigns significance to the

exchanged data during enhanced authentication and should

remain constant throughout the process, ensuring consistency

and integrity.

Authentication Data in MQTT

Authentication Data refers to binary information utilized during

the authentication process. It typically involves transferring

encrypted secrets or protocol steps in multiple iterations.

The specific content of the data heavily relies on the chosen

mechanism employed in enhanced authentication and is

specific to the application in use.

Source Code Example of Enhanced
Authentication in MQTT

In this code snippet, we utilize the HiveMQ extension SDK to

implement enhanced authentication. The purpose is to verify

the support of the Authentication Method and determine the

state of an MQTT client that is connecting after the exchange

of two AUTH messages.

Authentication Flow

 www.hivemq.com

71



public class MyEnhancedAuthenticator implements EnhancedAuthenticator {

 public void onConnect(EnhancedAuthConnectInput input, EnhancedAuthOutput

output) {

 final ConnectPacket connectPacket =

input.getConnectPacket();

 // Is the given authentication method supported?

 if

(authenticationMethodIsSupported(connectPacket.getAuthenticationMethod())) {

 // Did the client provide valid authentication data?

 if

(validateClientAuthenticationData(connectPacket.getAuthenticationData())) {

 // Send an AUTH message that contains a challenge!

 output.

continueAuthentication(prepareServerAuthenticationData());

 return;

 }

 }

 // Fail the authentication and disconnect the client.

 output.failAuthentication();

 }

 public void onAuth(EnhancedAuthInput input, EnhancedAuthOutput output) {

 final AuthPacket authPacket = input.getAuthPacket();

 // Try to validate the response.

 if

(validateClientAuthenticationData(authPacket.getAuthenticationData())) {

 // Allow the client to connect to the server.

 output.authenticateSuccessfully();

 return;

 }

 // Fail the authentication and disconnect the client.

 output.failAuthentication();

 }

}

The significance of Enhanced Authentication cannot be overstated. In a world where the proliferation of interconnected devices has

amplified the importance of secure communication, MQTT 5 steps up to the challenge. This advanced authentication mechanism

empowers organizations to safeguard their IoT infrastructure, sensitive data, and the privacy of their users.

MQTT Essentials Ebook

72

Chapter 23: MQTT Flow Control

Flow Control is a dynamic feature introduced in MQTT 5

designed to regulate message traffic between IoT devices and

brokers for efficient and stable communication.

IoT deployments encapsulate a wide range of device types. For

instance, an MQTT client embedded in a compact sensor varies

significantly from one incorporated in a high-performance

backend server regarding processing speed and storage

capabilities. Consequently, these MQTT clients demonstrate

varying tolerance levels for managing in-flight messages.

Here, an in-flight message refers to a PUBLISH command

with a Quality of Service level of one or two awaiting

acknowledgment.

Similarly, an IoT device might connect to multiple MQTT

brokers, each with distinct limitations on managing in-flight

messages from an MQTT client. To seamlessly manage such

diversified conditions among MQTT clients and brokers, MQTT

5 introduces the Flow Control feature.

How Flow Control Works in MQTT 5?

The Flow Control feature functions through a negotiation

between the client and broker to establish in-flight windows

during the connection. This process involves setting an

optional property known as "Receive Maximum" in the

CONNECT packet, indicative of the maximum number

of unacknowledged PUBLISH messages the client can

accommodate. The broker reciprocates with a similar value for

“Receive Maximum” in the CONNACK packet. If the "Receive

Maximum" value is not specified, the default value of 65,535 is

employed.

Client and broker negotiate their receive maximum.

What Are the Advantages of Flow Control in
MQTT 5?

Flow Control enhances dynamic message flow adjustment for

use cases involving diverse systems and devices, fostering

transparency and adaptability when multiple teams or vendors

collaborate on a project. No longer is it necessary for all

parties to pre-establish in-flight windows. If an MQTT 5 client

sends more unacknowledged messages than what the Server

Receive Maximum permits, the broker sends DISCONNECT

with Reason Code 0x93 (Receive Maximum exceeded). This

flexibility allows the client and broker to send fewer in-flight

messages than the corresponding Receive Maximum permits.

 www.hivemq.com

73



https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/

Chapter 24: MQTT Topic Tree &
Topic Matching: Challenges and Best
Practices Explained

As both the size and complexity of IoT projects continues to

grow, we talk to many IT architects who are working to solve

the technical challenges to design a data foundation built for

scale. In a large MQTT deployment, there may be thousands or

even millions of clients subscribing to different topics.

This chapter explains why finding the matching subscriptions

among millions of subscribers is a challenge and how an

MQTT broker can overcome this challenge.

What is Topic Matching in MQTT?

MQTT is a publish/subscribe protocol where devices act as

MQTT Clients and exchange messages over an MQTT Broker.

MQTT Clients send their data in the PUBLISH control packets

to the specific topic. The topic is separate from the packet’s

payload, which allows the broker to avoid analyzing the

packet’s payload. The broker delivers the published message

to every client subscribed with a matching topic filter.

For those unaware, the main distinction between the topic and

topic filter is that the topic is used for publishing and cannot

contain wildcard characters whereas the topic filter can. The

wildcard characters are used to aggregate multiple streams

of data into one and are thus used on the subscriber’s side. It

is possible to create a topic filter without wildcard characters,

then it would only match at most one topic. That case is often

referred to as an exact subscription.

In a nutshell, topic filter can be thought of as a selector for

topics that the PUBLISH packets are sent to. The broker must

be able to find the matching subscriptions for each published

message.

What to Do and What Not to Do

•	 Implementing “Receive Maximum”

remains an optional, yet beneficial

choice.

•	 Both client and broker can establish

their unique in-flight windows during the

connection initiation.

•	 Flow Control is designed to maintain

balanced message processing,

preventing the overloading of any

participating parties.

•	 As a feature, Flow Control aligns

seamlessly with MQTT 5’s key

objectives - enhancing transparency and

fostering increased flexibility.

MQTT Essentials Ebook

74

Subscriptions can contain wildcard characters to match a

broad range of topics. Subscriptions with wildcards are often

used when there is uncertainty about the topics that publishing

clients will use. For example, when the publishing clients

include their ID as one topic level, it may be impossible to

reliably receive messages for all such topics without the usage

of wildcard characters. While this is useful for the clients,

finding all the matching subscriptions presents a technical

challenge. In some real-life scenarios, brokers check millions

of subscriptions for every published message.

MQTT Wildcard Topic Matching Challenge
Explained

Since there are many use cases for wildcards, let’s examine the

technical challenge of capitalizing on wildcard subscriptions.

First, looking at every subscription for every published

message is not scalable. The number of steps needed to find

the matching subscriptions linearly increases with the number

of subscriptions. Alternatively, the broker could map the

subscriptions to their topic filters and check the map for all

filters matching the topic of a published message. This method

is also impractical because the number of potentially matching

topic filters is rather large for topics with many levels. For

instance, if a message is published to the topic “town/house/

kitchen”, all the subscriptions with the following topic filters

would match:

•	 #

•	 town/#

•	 town/house/#

•	 +/house/kitchen

•	 town/+/kitchen

•	 town/house/+

•	 +/+/kitchen

•	 town/+/+

•	 +/+/+

•	 town/house/kitchen

•	 …

The broker must also check the map for all these topic filters.

In production workloads, the broker has to find the matching

subscriptions for published messages thousands of times

per second, so it needs a specialized data structure for a fast

lookup.

The Topic Tree

The Topic Tree is a data structure used to solve the challenges

posed by the above wildcard topic matching problem. The

topic of the published message is used to collect the matching

subscriptions present in the topic tree. We start at the root of

the topic tree and proceed through its levels using the topic

segments to select the next node. If the current node has

wildcard subscriptions (with # or +), they are added to the

matching subscriptions. Once there are no more segments to

match in the topic and there are non-wildcard subscriptions in

the current node, there are exact subscriptions for this topic.

An exact subscription filters topics of published messages for

exact matches.

MQTT Topic Tree Structure

 www.hivemq.com

75



https://www.hivemq.com/case-studies/autonomic/

The broker can continue delivering the published message

to the subscribed clients once it has found all matching

subscriptions. This way of storing the subscriptions also

reduces memory usage because topic levels shared across

multiple subscriptions are only stored once.

In summary, MQTT’s topic matching is crucial to its publish/

subscribe protocol, enabling MQTT clients to exchange

messages with the MQTT broker with minimal effort. Topic

filters help select the topics to which PUBLISH packets are

sent, and subscriptions with wildcard characters enable broad

topic matching. However, finding all matching subscriptions

presents a technical challenge, it can be solved using a

specialized data structure called the Topic Tree. It is essential

to use best practices when designing topics to make them

agnostic of the implementation that the particular MQTT

broker may have for topic matching.

Chapter 25: Additional Reading for
Mastering MQTT

MQTT Over WebSockets

We’ve seen that MQTT is ideal for constrained devices and

unreliable networks and that it is perfect for sending messages

with a very low overhead. Naturally, it would be quite nice

to send and receive MQTT messages directly in a browser.

For example, on a mobile phone. MQTT over WebSockets is

the answer. MQTT over WebSockets enables the browser to

leverage all MQTT features. You can use these capabilities for

many interesting use cases:

•	 Display live information from a device or sensor.

•	 Receive push notifications (for example, an alert or critical

condition warning).

•	 See the current status of devices with LWT and retained

messages.

•	 Communicate efficiently with mobile web applications.

What Does All This Mean from a Technical Point of View?

Every modern browser that supports WebSockets can be a

full-fledged MQTT client and offer all the features described in

the MQTT Essentials. The Keep Alive, Last Will and Testament,

Quality of Service, and Retained Messages features work

the same way in the browser as in a native MQTT client.

All you need is a JavaScript library that enables MQTT

over WebSockets and a broker that supports MQTT over

WebSockets. Of course, HiveMQ Broker offers this capability

straight out-of-the-box.

Best Practices

For your application to filter messages to your

specifications regardless of how the MQTT Broker

defines topic matching, there are a few topic design

considerations that you may leverage.

It is good practice to avoid topic levels that do not

add additional information, like using the same topic

level across all subscriptions. The most common

example of such abuse is using the company name

as the first level for every subscription. While some

topic levels typically have less variety than others,

you should omit topic levels that are the same for

every topic. Similarly, leading with forward slashes

must be matched, so should be avoided if you don’t

want them present on all topics.

Bad practice:

•	 home/livingarea/kitchen

•	 home/livingarea/bathroom

•	 home/garage

Bad practice:

•	 /livingarea/kitchen

•	 /livingarea/bathroom

•	 /garage

Good practice:

•	 livingarea/kitchen

•	 livingarea/bathroom

•	 Garage

MQTT Essentials Ebook

76

https://eclipse.dev/paho/index.php?page=clients/js/index.php

How Does It Work?

WebSocket is a network protocol that provides bi-directional

communication between a browser and a web server. The

protocol was standardized in 2011 and all modern browsers

provide built-in support for it. Similar to MQTT, the WebSocket

protocol is based on TCP.

In MQTT over WebSockets, the MQTT message (for example,

a CONNECT or PUBLISH packet) is transferred over the

network and encapsulated by one or more WebSocket

frames. WebSockets are a good transport method for

MQTT because they provide bi-directional, ordered, and

lossless communication (WebSockets also leverage TCP).

To communicate with an MQTT broker over WebSockets,

the broker must be able to handle native WebSockets.

Occasionally, people use a webserver and bridge WebSockets

to the MQTT broker, but we don’t recommend this method.

When using HiveMQ, it is very easy to get started with

WebSockets. Simply enable the native support in the

configuration.

Why Not Use MQTT Directly?

Currently, it is not possible to speak pure MQTT in a browser

because it is not possible to open a raw TCP connection.

Socket API will change that situation; however, few browsers

implement this API yet.

Get Started

If you want to get started with MQTT over WebSockets, here

are some useful resources:

•	 For testing and debugging, the HiveMQ MQTT WebSocket

client is ideal. The public broker of the MQTT Dashboard

is the default broker of this client. All features of the

client are documented in detail and the source code is

available on GitHub.

•	 If you want to integrate MQTT into your existing web

application, check out this step-by-step guide on how to

build your own MQTT WebSockets client.

•	 To learn more about how to set up your own broker with

WebSockets support, read MQTT over WebSockets.

Secure WebSockets

You can leverage Transport Layer Security (TLS) to use secure

WebSockets with encryption of the whole connection. This

method works seamlessly with HiveMQ. However, there

are a few points that you need to keep in mind. For more

information, see the Gotchas section of our user guide.

Types of MQTT Brokers

There are different types of MQTT brokers available:

•	 Open source: These are license-free brokers that are

suitable for small-scale projects.

•	 Commercial: These are available via licenses and offer

several features and customization, making them suitable

for production-level deployment.

•	 Cloud-managed: These are fully-managed MQTT brokers

that need minimum maintenance and are easy to deploy.

•	 General purpose: These are available both license-free

as well as for licenses and are suitable for small-scale

projects.

The below image summarizes features offered by different

types of brokers.

For in-depth information, download our 2023 Buyer’s Guide:

MQTT Platforms.

 www.hivemq.com

77



https://www.w3.org/TR/raw-sockets/
https://www.hivemq.com/demos/websocket-client/
https://www.hivemq.com/demos/websocket-client/
https://www.mqtt-dashboard.com/
https://github.com/hivemq/hivemq-mqtt-web-client
https://www.hivemq.com/blog/build-javascript-mqtt-web-application/
https://www.hivemq.com/blog/build-javascript-mqtt-web-application/
https://www.hivemq.com/blog/mqtt-over-websockets-with-hivemq/
https://docs.hivemq.com/hivemq/latest/user-guide/listeners.html#gotchas
https://www.hivemq.com/resources/2023-buyers-guide-mqtt-platform-for-iot-iiot/
https://www.hivemq.com/resources/2023-buyers-guide-mqtt-platform-for-iot-iiot/

Open Source vs. Commercial MQTT Brokers

Open-source MQTT brokers have limited scalability, limited

security options, cannot cluster for higher availability, are

hard to manage when coded in difficult libraries, and have no

overload protection from overactive publishers.

On the other hand, commercial MQTT brokers are customizable

according to your needs, provide increased scalability, security,

flexibility & reliability, and have overload protection.

HiveMQ offers a community edition MQTT broker as well as a

commercial MQTT broker. Explore them now!

On-premises MQTT Brokers vs. Fully-Managed Cloud
MQTT Brokers

On-premises MQTT brokers offer more control but require

substantial setup and maintenance. Fully managed cloud-

based MQTT brokers are easier to deploy, cost-effective, and

have zero maintenance requirements.

HiveMQ offers an on-prem MQTT broker as well as a fully-

managed cloud MQTT broker. Explore them now!

MQTT HTTP

Full name

MQTT (the OASIS standardization

group decided it would not stand for

anything)

Hypertext Transfer Protocol

Architecture
Publish subscribe (MQTT does have a

request/reply mode as well)
Request response

Command targets Topics URIs

Underlying Protocol TCP/IP TCP/IP

Secure connections
TLS + username/password (SASL

support possible)
TLS + username/password (SASL support possible)

Client observability
Known connection status (will

messages)
Unknown connection status

Messaging Mode Asynchronous, event-based Synchronous

MQTT vs. Other IoT Protocols
MQTT vs. HTTP

MQTT Essentials Ebook

78

https://www.hivemq.com/products/hivemq-self-managed/
https://www.hivemq.com/products/mqtt-cloud-broker/
https://www.hivemq.com/products/mqtt-cloud-broker/

MQTT HTTP

Message queuing
The broker can queue messages for

disconnected subscribers
Application needs to implement

Message overhead
2 bytes minimum. Header data can

be binary

8 bytes minimum (header data is text - compression

possible)

Message Size 256MB maximum
No limit but 256MB is beyond normal use cases

anyway.

Content type Any (binary) Text (Base64 encoding for binary)

Message distribution One to many One to one

Reliability

Three qualities of service: 0 - fire and

forget, 1 - at least once, 2 - once and

only once

Has to be implemented in the application

MQTT vs. AMQP

MQTT AMQP

Full name

MQTT (the OASIS standardization

group decided it would not stand for

anything)

Advanced Message Queuing Protocol

Architecture
Publish subscribe (MQTT does have a

request/reply mode as well)

Queues, multicast (fanout), publish subscribe,

request reply

Command targets Topics Exchanges, Queues

Underlying Protocol TCP/IP TCP/IP

 www.hivemq.com

79



MQTT AMQP

Secure connections
TLS + username/password (SASL

support possible)
TLS + username/password (SASL support possible)

Client observability
Known connection status (will

messages)
Unknown connection status

Messaging Mode Asynchronous, event-based Synchronous and asynchronous

Message queuing
The broker can queue messages for

disconnected subscribers
Core capability, flexible configuration

Message overhead 2 bytes minimum 8 bytes (general frame format)

Message Size 256MB maximum 2GB theoretical, 128MB max recommended

Content type Any (binary) Any (binary)

Topic matching Level separator: / Wildcards: + # Level separator: . Wildcards: * #

Reliability

Three qualities of service: 0 - fire and

forget 1 - at least once 2 - once and

only once

Two qualities of service: -without acks (=0) - with

acks (=1)

Connection

“multiplexing”
No Yes - channels

Message attributes MQTT 5.0 only Yes

Object persistence Yes Yes

MQTT Essentials Ebook

80

MQTT vs. ZeroMQ

MQTT ZeroMQ

Full name

MQTT (the OASIS standardization

group decided it would not stand for

anything)

ZeroMQ

Architecture Client/server Peer to peer

Command targets Topics ZeroMQ sockets

Underlying Protocol TCP/IP TCP/IP, UDP, shared memory

Secure connections
TLS + username/password (SASL

support possible)
PLAIN (username/password), CurveZMQ and ZAP

Client observability
Known connection status (will

messages)
None

Retained messages Yes No

Messaging Mode Asynchronous, event-based Application dependent

Message queuing
The broker can queue messages for

disconnected subscribers
Some 0MQ socket types have it

Message overhead 2 bytes minimum 2 bytes minimum

 www.hivemq.com

81



http://curvezmq.org/
https://rfc.zeromq.org/spec/27/

MQTT ZeroMQ

Message Size 256MB maximum 2^63-1 bytes per frame

Message

fragmentation
No Yes

Content type Any (binary) Any

Pub/sub topic

matching
Level separator: / Wildcards: + # Prefix only

Message distribution One to many, one to one Various

Reliability

Three qualities of service:

0 - fire and forget

1 - at least once

2 - once and only once

Varies between socket types, but the equivalent

of QoS 2 would have to be implemented in the

application.

MQTT CoAP

Full name

MQTT (the OASIS standardization

group decided it would not stand for

anything)

The Constrained Application Protocol

Architecture Client/Server Client/Server

MQTT vs. CoAP

MQTT Essentials Ebook

82

MQTT CoAP

Command targets Topics URIs

Underlying transport TCP UDP

Default insecure TCP

port
1883 5684

Default secure UDP

port
8883 5684

Secure connections
TLS + username/password (SASL

support possible)
DTLS (TLS for UDP)

Client observability
Known connection status (will

messages)
None

Retained messages Yes No

Messaging Mode Asynchronous, event-based
Synchronous (or asynchronous with observe

extension)

Message queuing
The broker can queue messages for

disconnected subscribers
None

Message overhead 2 bytes minimum 4 bytes minimum

Message Size 256MB maximum

Limit of underlying transport - RFC 7252 suggests

1152 bytes for UDP if nothing is known about the

target.

Message

fragmentation
Reliant on TCP No (RFC 7959 proposes an extension for this)

Content type Any (binary) Any

 www.hivemq.com

83



https://datatracker.ietf.org/doc/html/rfc6347
https://www.rfc-editor.org/rfc/rfc7959

MQTT CoAP

Pub/sub topic

matching
Level separator: /Wildcards: + # No pub/sub (but extensions have been proposed)

Message distribution One to many, one to one One to many, one to one

Reliability

Three qualities of service: 0 - fire and

forget 1 - at least once 2 - once and

only once

Confirmable or not (roughly equivalent to QoS 1 and

0)

Implementing MQTT in C

Developers can use different client libraries to implement MQTT in different languages, such as Java, C, C#, etc.

To get started with the Paho MQTT C Client library, clone the repo and use the following code to install it.

For more instructions, read our blog Implementing MQTT in C.

Implementing MQTT in Java

Developers can use an MQTT Java Client Library, such as HiveMQ MQTT Client for Java or Eclipse Paho Java MQTT Client Library. To

use Paho Java, install it by downloading it from the Eclipse project page. If you’re using Maven, add the following code to your

pom.xml file.

git clone https://git.eclipse.org/r/paho/org.eclipse.paho.mqtt.c

make

sudo make install

 <repositories>

 <repository>

 <id>Eclipse Paho Repo</id>

 <url>https://repo.eclipse.org/content/repositories/paho-releases/</url>

 </repository>

</repositories>

MQTT Essentials Ebook

84

https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-pubsub-10
https://www.hivemq.com/blog/implementing-mqtt-in-c/
https://github.com/hivemq/hivemq-mqtt-client

Then add the following code to your dependencies section.

<dependency>

 <groupId>org.eclipse.paho</groupId>

 <artifactId>org.eclipse.paho.client.mqttv3</artifactId>

 <version>1.0.2</version>

</dependency>

For more instructions, read our blog Implementing MQTT in Java.

Implementing MQTT in C#

You can install the HiveMQ C# MQTT client by using the code:

dotnet add package HiveMQtt

For more instructions, read our blog Implementing MQTT in C#.

Implementing MQTT in Python

You can install Paho MQTT for Python 3.12 in the command line with the code:

pip3 install paho-mqtt<2.0.0

For more instructions, read our blog Implementing MQTT in Python.

MQTT Broker Architecture in Smart Manufacturing

MQTT brokers can be used for several smart manufacturing use cases, such as intra-factory connections, inter-factory connections,

etc.

Here’s an example of inter-factory communication using the HiveMQ MQTT Broker.

To learn more, read our

whitepaper Modernizing

the Smart Manufacturing

Industry with MQTT.

 www.hivemq.com

85



https://www.hivemq.com/blog/implementing-mqtt-in-java/
https://www.hivemq.com/blog/implementing-mqtt-in-c-sharp/
https://www.hivemq.com/blog/implementing-mqtt-in-python/
https://www.hivemq.com/resources/modernizing-the-manufacturing-industry/
https://www.hivemq.com/resources/modernizing-the-manufacturing-industry/
https://www.hivemq.com/resources/modernizing-the-manufacturing-industry/

MQTT Broker Architecture in Connected Cars

MQTT brokers can be used for several connected car use cases such as remote monitoring, remote diagnostics, Over-the-Air (OTA)

updates, theft recovery, energy management, etc.

To learn more, read our blog Building New Connected Car Features on the Back of a Robust Connectivity Platform.

MQTT Broker Architecture in Transportation and Logistics

MQTT brokers are well-suited for use in the transportation and logistics industry, where real-time data communication is crucial for

efficiency and safety. Some of the use cases include fleet management, supply chain visibility, warehouse management, driver and

cargo safety, etc.

Here’s an example of how an MQTT broker, like HiveMQ, can help real-time communication between several vehicles and backend

systems.

MQTT Essentials Ebook

86

https://www.hivemq.com/blog/build-new-connected-car-features-on-connectivity-platform-with-mqtt/

MQTT Broker Architecture in the Energy Industry

MQTT brokers can play a crucial role in optimizing the operations and OT/IT interoperability in the energy industry. MQTT brokers can

be used in energy use cases such as Asset Performance Management, Predictive Maintenance, Asset Tracking, etc.

Here’s an example of how an MQTT broker, like HiveMQ, can be used for Remote Asset Management in Oil & Gas.

Chapter 26: Next Steps – Choosing
the Right MQTT Broker

Choosing the right MQTT broker depends on your architectural

requirements (a.k.a. Non-Functional Requirements). An MQTT

broker comparison based on these architectural requirements

should give you insight into how to find the best MQTT broker

for your needs.

Here are some of the functionalities you should look for in an

MQTT broker if you want to use it in large-scale production:

•	 Handling large numbers of concurrent connections

reliably: Depending on its implementation, a broker

has the capability to manage millions of MQTT client

connections reliably and securely, with a robust load

balancing feature. This facilitates communication

between diverse devices, networks, and software systems

in near real-time.

•	 Filtering and routing messages: MQTT brokers can filter

messages based on the subscription topic and determine

which client(s) should receive the message.

•	 Session management: MQTT brokers can maintain

session data for all connected clients, including

subscriptions and missed messages, for clients with

persistent sessions.

•	 Authentication and authorization: The broker is

responsible for authenticating and authorizing clients

based on credentials provided by the client. The broker

is extensible, facilitating custom authentication,

authorization, and integration into backend systems. In

addition to authentication and authorization, brokers may

provide other security features, such as encryption of

messages in transit and access control lists.

•	 Scalability and monitoring: An MQTT broker must

be scalable to handle large volumes of messages

and clients, integrate into backend systems, be easy

to monitor, and be failure-resistant. To meet these

 www.hivemq.com

87



https://www.hivemq.com/solutions/asset-performance-management/
https://www.hivemq.com/solutions/predictive-maintenance/
https://www.hivemq.com/solutions/asset-tracking/

requirements, the MQTT broker must use state-of-the-

art event-driven network processing, an open extension

system, and standard monitoring providers. Brokers

may also provide advanced features for managing and

monitoring the MQTT system, such as message filtering,

message persistence, and real-time analytics.

•	 Clustering: MQTT brokers can support clustering, allowing

multiple instances of the broker to work together to

handle large numbers of clients and messages.

•	 Provides control over how IoT data flows within your data

pipeline: Prominent MQTT brokers can provide you with

the ability to have control over your data with visualization

and management tools, powerful security features, and

an integrated policy engine that can validate, enforce, and

transform data in motion.

HiveMQ Self-Managed Enterprise Broker offers all the above

features. Hundreds of active customers, across the globe trust

HiveMQ MQTT Broker for reliable, flexible, observable, secure,

and scalable data communication.

Here are some of the functionalities you should look for in an

MQTT Broker if you want to use it in small-scale projects:

•	 Ease-of-use: For small-scale projects, especially DIY

projects and PoCs, an MQTT broker should be easy to

deploy. There are several open-source and fully-managed

MQTT brokers that help you connect devices with minimal

effort.

•	 Scalability: MQTT brokers should be able to help you scale

as you go so your PoCs turn into production-level projects

soon.

•	 Cost-efficiency: There is pay-as-you-go pricing available

for MQTT brokers so you don’t have to constrain yourself

while working on a PoC.

•	 Security: It goes without saying how important it is

to secure your device connectivity from end to end,

irrespective of your scale of the project.

HiveMQ Cloud is a fully managed MQTT broker that offers all

the features above. Do check it out.

MQTT Essentials Ebook

88

https://www.hivemq.com/products/mqtt-broker/
https://www.hivemq.com/products/mqtt-cloud-broker/

HiveMQ is active in the open source community, working with several
organizations to advance the adoption of the MQTT protocol for IoT.

We are a member of the OASIS MQTT and
MQTT-SN Technical Committees.

We are a member of the OASIS MQTT and
MQTT-SN Technical Committees.

We are a member of the OASIS MQTT and
MQTT-SN Technical Committees.

HiveMQ Cloud:
Develop, test, deploy, and scale

production IoT use cases without a
large investment.

HiveMQ Trial:
Trial the HiveMQ platform with all of the

enterprise features needed for large-scale
deployment.

 www.hivemq.com

89



https://groups.oasis-open.org/communities/tc-community-home2?CommunityKey=99c86e3a-593c-4448-b7c5-018dc7d3f2f6
https://groups.oasis-open.org/communities/tc-community-home2?CommunityKey=99c86e3a-593c-4448-b7c5-018dc7d3f2f6
https://eclipse.dev/paho/
https://eclipse.dev/paho/
https://sparkplug.eclipse.org/
https://sparkplug.eclipse.org/
https://www.hivemq.com/pricing/
https://www.hivemq.com/company/get-hivemq/

HiveMQ empowers businesses to transform with the most
trusted MQTT platform. Designed to connect, communicate,
and control IoT data under real-world stress, the HiveMQ MQTT
Platform is the proven enterprise standard for Industry 4.0.
Leading brands like Audi, BMW, Liberty Global, Mercedes-Benz,
Siemens, and ZF choose HiveMQ to build smarter IIoT projects,
modernize factories, and create better customer experiences.

Visit hivemq.com to learn more

About HiveMQ

www.hivemq.com

http://hivemq.com

	Abstract
	Chapter 1: Introduction to MQTT
	Chapter 2: Mastering the Basics of MQTT
	Chapter 3: MQTT Topics, Subscriptions, QoS, and Persistent Messaging
	Chapter 4: MQTT Publish/Subscribe Architecture (Pub/Sub)
	Chapter 5: MQTT Client and MQTT Broker Connection Establishment
	Chapter 6: MQTT Publish, MQTT Subscribe & Unsubscribe
	Chapter 7: MQTT Topics and Wildcards
	Chapter 8: MQTT Quality of Service (QoS) 0,1, & 2
	Chapter 9: MQTT Persistent Sessions and Clean Sessions
	Chapter 10: MQTT Retained Messages
	Chapter 11. MQTT Last Will and Testament (LWT)
	Chapter 12: MQTT Keep Alive and Client Take-Over
	Chapter 13: Introduction to MQTT 5 Protocol
	Chapter 14: Key Reasons to Upgrade to MQTT 5 from MQTT 3.1.1
	Chapter 15: MQTT Session Expiry and Message Expiry Intervals
	Chapter 16: MQTT 5’s Improved Client Feedback & Negative ACKs
	Chapter 17: MQTT User Properties
	Chapter 18: MQTT Shared Subscriptions
	Chapter 19: MQTT Payload Format Description and Content Type
	Chapter 20: MQTT Request-Response Pattern
	Chapter 21: MQTT Topic Alias
	Chapter 22: Enhanced Authentication in MQTT
	Chapter 23: MQTT Flow Control
	Chapter 24: MQTT Topic Tree & Topic Matching: Challenges and Best Practices Explained
	Chapter 25: Additional Reading for Mastering MQTT
	Chapter 26: Next Steps – Choosing the Right MQTT Broker

