Live Webinar Oct 2, 2024 | 8AM PT | 11AM ET | 5PM CET **Driving the Future: Aligning Automotive** Innovation with **USCAR Standards**

Speakers

Michael King

CoFounder, LHP Analytics & IoT, Chief Product Officer, LHP Engineering

Program Leader & Principal Investigator, USCAR Industrial Communication

Ravi Subramanyan

Director of Industry Solutions, HiveMQ

Industrial Data Communication Standard: Background and Problem Statement

- Smart Manufacturing requires a high degree of automation and integration of systems deliver optimal performance and Return on Investment
- These systems have evolved over decades in a highly proprietary, closed manner by the companies who design and sell them
- The resulting landscape of incompatible machine communication creates costly delays and complexity in product launches for USCAR companies
- To solve this problem, USCAR has created the first of its kind Industrial Data Communications standard that meets the requirements of the Automotive Industry

Industrial Data Communication Standard: Problems We Need to Solve

Stovepipe Architectures

Data is trapped within applications focused on specific manufacturing processes

Vendor Lock-in

Many equipment vendors developed their own proprietary software that are incompatible with other vendors

Propriety, Closed Protocols

Vendors restrict access to raw machine data in efforts to monetize access and vendor-specific analytics

No Interoperability

Proprietary protocols and vendor-specific software blocks plug-and-play equipment deployments

No Application Portability

Proprietary protocols require custom applications for each vendor, increasing costs and creating additional data silos

Data Silos

Manufacturing data is trapped in factory-specific applications, minimizing the use of advanced analytics

Difficult to Scale

Legacy Plant floor applications limit the scale and speed of smart manufacturing deployments, driving up costs, and limits the ability of IT staff to provide functional support/upgrades

Lack of cross-OEM Ownership

This is an industry-wide issue that no one company by themselves can solve

Background: USCAR: 2019-2023

Manufacturing TLC Industrial Data Communication Standard

Project Description

Develop and Deploy an Industrial Data Communication standard that provides the ٠ foundation for Smart Manufacturing across the entire Automotive Industry worldwide. **Project Status:** SAE-USCAR-53: Released June 1st, 2023

Project Timeline	2019		2020			2021			1	2022			2023			2024			;	2025			2026				
	Q1 Q2 C	3 Q4	Q1	Q2 Q	3 Q4	Q1	Q2	Q3 0	4 Q	1 Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2 Q:	3 Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
	Develop Scope Perform Benchma					narking			Standard Develop			pment			Deploy, Implement,				and Maintain								

Industrial Data Communication Standard: Value to USCAR & OEM Members

Reduce Cost, Maximize Scale

Deploy common Smart Factory solutions worldwide, accelerate asset utilization efforts

Improve Quality

Leverage extensive predictive analytics, AI, and accelerate feedback loops to engineering

Enable Dynamic Manufacturing

Leverage open protocols to enable plug-and-play equipment deployment, automate line configurations

Compress Product Launch

Expand simulations, deployment of Digital Twins to accelerate feedback to engineering, stabilize line configurations

Minimize Equipment Downtime

Extended predictive maintenance analysis & machine learning algorithms worldwide

Optimize Performance

Accelerating feedback loops throughout the entire manufacturing process to monitor quality and supplier flow

Ensure Security & Traceability

Seamless large-scale systems integration portal ensures company data is safe, secure, and fully auditable.

The Business Case for SAE/USCAR 53

*

Industrial Data feeds more than just OEE and Predictive Maintenance

The Business Case for SAE/USCAR 53

Financial

- 3-6% EBIT Savings per OEM
- \$40M \$160M savings annually

Operational

- Significantly faster than OPCUA (50ms vs 250ms)
- Less manual effort than legacy or OPCUA
- Less Complexity than legacy or OPCUA
- Significantly less expensive than OPCUA
 - (\$300/400 licensing per device)

Industrial Machine Communication Emerging Best Practice Architecture

2

Industrial Data Communication ISA 95 Model & Automation Protocols

IA95 Model & Automation Protocols

Industrial Data is siloed, horizontal

X

Major IIoT Connectivity Standards

Existing Standards focused on horizontal layers

USCAR 53: Connecting All Levels of the Factory

IA95 Model & Automation Protocols

USCAR53: Industrial Data at Scale, Worldwide

Smart Factory Solutions

USCAR53: MQTT vs OPCUA

- Here are some data points that drove the decision for USCAR53 to MQTT:
- 1. OPCUA: significantly slower than MQTT (250ms vs 50ms)
- 2. OPCUA: added costs for less performance. (\$300/400 licensing per device)
- 3. OPCUA: more manual than MQTT (Requires a DB structure or knowledge of NodelDs)
- 4. OPCUA: more complexity. Until recently, RW didn't have a start on a proper OPCUA (on PLC) server like Siemens has
 - a. Required work arounds with containerized OPCUA on an ipc to substitute.

Industrial Data Communication Standard Release 1 Scope Considerations

- USCAR will provide ownership/stewardship for the standard
- Partner OEMs will leverage this standard to drive change into Equipment OEMs through their respective Capital budgeting and purchasing mechanisms
- USCAR will lead Communication, Marketing, & Training for the Standard
- USCAR will provide recurring change management and revision release plan
- Expect non-USCAR OEMs and Tier 1s to sign on to the standard

Roll-Out Plan: Key Stakeholders Groups

Communication - Marketing - Training - Support - Pilot Projects

Marketing Plan – Web Content Creation, User Support

Marketing Plan – Awareness, Events

Smart Manufacturing Workshop Agenda

April 15, 2024 Renaissance Center Conference Center Detroit, MI

USCAR (United States Council for Aut... 977 followers 3w • Edited • (1)

Thanks to everyone who joined USCAR on Monday, April 15 for USCAR's Smart Manufacturing Workshop! Special thanks to our keynote speakers for their support of USCAR Collaboration: Former US Congresswoman Brenda Lawrence, General Motors' Dan Nicholson and U.S. Department of Energy (DOE) AMMTO Director, Christopher Saldaña.

Special thanks also to our colleagues at CESMII and LHP Engineering Solutions for providing their support and expertise as well.

Additional thanks to our Manufacturing Technical Leadership Council, Mike Bastian (Ford), Jeffrey Abell (GM), and Joe Weber (Stellantis), and John McKenzie (Stellantis) for their guidance and participation in our expert panel.

#USCAR #smartmanufacturing #collaboration

L p^{17}

Marketing Plan – Awareness, Events

You can catch Michael's segment on How the Big 3 are Focusing on Digital Transformation Standards and How This Can Benefit the RV Manufacturing Industry on Thursday, May 2nd from 1 pm - 2 pm

To register for tickets, visit: elkhartcountybiz.com

LHP Analytics & IoT #AutomationExpo #DataInsights #KeynoteSpeaker #industrialautomation #m

HiveMQ Supports the **USCAR** Roadmap

The United States Council for Automotive Research LLC (USCAR) is an automotive technology consortium made up of major US automotive companies Ford, General Motors, and Stellantis. Established to advance utomotive technologies, USCAR is developing a Roadmap for Automotive Manufacturing to standardize processes, enhance interoperability, and prove the efficiency of automotive manufacturing

Industrial Data Communication Standard: SAE/USCAR-53

USCAR has developed an Industrial Data Communication Standard to address significant challenges in automotive manufacturing by promoting open protocols and reducing costs, thus facilitating seamless integration, enhancing system security, traceability, and operational efficiency.

The chal es automotive manufacturers face include

Automotive HiveMQ Broker

How HiveMQ and MQTT Support USCAR

by Ravi Subramanyan AUG 7, 2024 18 min read

The automotive industry is rapidly evolving, with smart manufacturing practices becoming essential for efficiency and competitiveness. The United States Council for Automotive Research (USCAR) plays a key role in promoting collaboration and standardization among major automakers through its USCAR-53 goals. However, manufacturers face challenges in data communication and interoperability, which are critical for meeting the USCAR standards, particularly USCAR-53.

In this blog post, we will walk you through how HiveMO's MOTT platform can help manufacturers tackle several data communication challenges and helps accelerate industrial data communication proposed by USCAR-53. Let's dive in

Introduction to United States Council for Automotive Research (USCAR)

USCAR

 Best Practice: Leverage the new standard and program structure to a RV Industry adoption of Smart Factory

USCAR-53: Implications for the RV Industry

- Similar Industry-level challenges: Work together with USCAR OEM suppliers on priorities, training, pilot-projects, and standards developm
- · Community of Experts: Work directly with your counterparts at all lev organization, and across Technical domains
- · Pilot Projects: Learn by doing, share knowledge & expertise

Table of Contents

N

Excited to join as a Panelist for

May 2nd, 2024 | 5:00 PM to 7:30 PM

How HiveMQ and MQTT Support USCAR Introduction to United States Council for Automotiv Research (USCAR) Challenges in Industrial Data Communication How MOTT Enables Industrial Data Communication Unified Namespace (UNS) HiveMQ: Accelerating the Industrial Data Communication Proposed by USCAR

HiveMQ: Enabling the Promised USCAR Industrial Data Communication Standard

Pilot Projects Update & Next Steps

- Desktop Pilot: to include small demo at June 1st USCAR IDEA event
- Community-based Pilot: leverage facility such as LIFT (LIFT | Manufacturing USA) to demo standard on functioning equipment
- **Tier 1 Pilot**: Utilize common Tier 1 to demo standard in production environment
- **OEM pilots**: Led by OEM teams for internal employees only

Pilot Projects Update & Next Steps

Resources

Case Studies: Driving Smart Manufacturing Standards for USCAR

BLOG: How HiveMQ and MQTT Support USCAR

USCAR MQTT Data Sheet

USCAR Resource Center

USCAR-53 Communication Specification

MQTT Essentials - All Core Concepts Explained

Unified Namespace (UNS) Essentials for IIoT

MQTT Sparkplug Essentials for IIoT | HiveMQ

Questions?